26. Characterizations of BCI, BCK-Algebras

By Yoshinari Arai, Kiyoshi Iséki, and Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1966)
In this note, we shall consider some characterizations of the $B C I$, $B C K$-algebras defined in [1]. By a BCI-algebra, we mean an algebra $\boldsymbol{M}=\langle X, 0, *\rangle$ with an element 0 and a binary operation * satisfying the following conditions $B C I \quad 1 \sim 5$:

BCI $1(x * y) *(x * z) \leqslant z * y$,
BCI $2 x *(x * y) \leqslant y$,
BCI $3 x \leqslant x$,
BCI $4 x \leqslant y, y \leqq x$ imply $x=y$.
BCI $5 x \leqslant 0$ implies $x=0$,
where $x \leqslant y$ means $x * y=0$.
$B C I 5$ is equivalent to : $x * 0=0$ implies $x=0$. If $B C I 5$ is replaced by $B C I$ 6: $0 \leqslant x$ for every $x \in X$, the algebra M is called BCK-algebra.

In [1], we proved that
(6) $(y * x) *(z * x) \leqslant y * z$
holds in the $B C I$-algebra. We first prove the following
Theorem 1. The BCI-algelra is characterized by BCI $2 \sim 5$ and (6).

Proof. (6) implies the following results:
(7) If $y \leqslant z$, then $y * x \leqslant z * x$.
(8) If $x \leqslant y, y \leqslant z$, then $x \leqslant z$.

By (6) and (7), we have
(9) $((y * x) *(z * x)) * u \leqslant(y * z) * u$.

We substitute $y * u$ for z in (9), then by $B C I 2$, we have
(10) $(y * x) *((y * u) * x) \leqslant u$.

In formula (10), let $x=y, y=x * z$, and $u=(x * y) * z$, then

$$
((x * z) * y) *(((x * z) *((x * y) * z)) * y) \leqslant(x * y) * z
$$

The second term of the left side is equal to 0 , hence if $x * y \leqslant z$, i.e. $(x * y) * z=0$, then in the formula above, the right side is equal to 0 , so we have $x * z \leqslant y$ by $B C I 5$. Therefore, we have
(11) If $x * y \leqslant z$, then $x * z \leqslant y$.

Hence, by (11) and (6),
BCI $1 \quad(x * y) *(x * z) \leqslant z * y$.
It is obvious from [1] that the converse holds. The proof of Theorem 1 is complete.

By Theorem 1, we have the following

Theorem 2. A BCK-algebra is characterized by BCI 2~4, $B C I 6$ and (6).

In [1], we proved that
(12) $(x * y) *(x *(z *(u * y))) \leqslant z * u$
holds in the $B C I$-algebra. We show the following
Theorem 3. A BCI-algebra is characterized by BCI 3~5 and (12).

Therefore we also have the following
Theorem 4. A BCK-algebra is characterized by BCI 3, 4, 6, and (12).

We shall prove Theorem 3.
Proof. In (12), let $x=x *(x * y), z=u=x$, then

$$
((x *(x * y)) * y) *((x *(x * y)) *(x *(x * y))) \leqslant x * x .
$$

Then by BCI 3 and 5 , we have $x *(x * y) \leqslant y$, which is BCI 2. From (12), we have the following result
(13) if $x \leqslant z *(u * y)$ and $z \leqslant u$, then $x \leqslant y$.

In (12), if $z=u$, then $x * y \leqslant x *(z *(z * y))$. This formula has the form of $x \leqslant z *(u * y)$ by putting $x * y=x, x=z, z=u$, and $u * y=y$. Hence if $x \leqslant z$ (this means $z \leqslant u$ in (13)), then $x * y \leqslant z * y$. Therefore we have
(7) If $x \leqslant y$, then $x * z \leqslant y * z$.
(8) If $x \leqslant y, y \leqslant z$, then $x \leqslant z$.

Let $u=z$ in (12), then $x * y \leqslant x *(z *(z * y))$, and by (7), we have
(14) $(x * y) * u \leqslant(x *(z *(z * y))) * u$.

Next, put $x=y * x, y=z * x, z=y$, and $u=y * z$ in (14), then

$$
((y * x) *(z * x)) *(y * z) \leqslant((y * x) *(y *(y *(z * x)))) *(y * z) .
$$

The right side of the above formula is equal to 0 , since it is obtained by substituting y for x and z, x for y and z for u in (12). Hence we have
(6) $(y * x) *(z * x) \leqslant y * z$.

Therefore by Theorem 1, we have Theorem 3 and complete the proof.
Remark. We shall show that BCI 1~5, (6), (8), and (11) imply $(x * y) * z \leqslant(x * z) * y$, and hence $(x * y) * z=(x * z) * y$.

By BCI 1, (6) and (8), we have $((x * y) * z) *((x * u) * z) \leqslant(x * y) *$ $(x * u) \leqslant u * y$. Hence by (11),

$$
((x * y) * z) *(u * y) \leqslant(x * u) * z .
$$

Let $u=x * z$ in the formula above, then

$$
((x * y) * z) *((x * z) * y) \leqslant(x *(x * z)) * z .
$$

Then the right side is equal to 0 , hence we have

$$
(x * y) * z \leqslant(x * z) * y .
$$

By BCI 4, we have $(x * y) * z=(x * z) * y$. A proof of this formula is given in [1].

Reference

[1] K. Iséki: An algebra related with a propositional calculus. Proc. Japan Acad., 42, 26-29 (1966).

