26. Characterizations of BCI, BCK-Algebras

By Yoshinari ARAI, Kiyoshi ISÉKI, and Shôtarô TANAKA (Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1966)

In this note, we shall consider some characterizations of the *BCI*, *BCK*-algebras defined in [1]. By a *BCI-algebra*, we mean an algebra $M = \langle X, 0, * \rangle$ with an element 0 and a binary operation * satisfying the following conditions *BCI* $1 \sim 5$:

 $BCI \ 1 \quad (x * y) * (x * z) \leq z * y,$

 $BCI \ 2 \quad x * (x * y) \leq y,$

BCI 3 $x \leq x$,

BCI 4 $x \leq y, y \leq x$ imply x = y.

BCI 5 $x \leq 0$ implies x=0,

where $x \leq y$ means x * y = 0.

BCI 5 is equivalent to: x*0=0 implies x=0. If *BCI* 5 is replaced by *BCI* 6: $0 \le x$ for every $x \in X$, the algebra *M* is called *BCK-algebra*.

In [1], we proved that

 $(6) \quad (y*x)*(z*x) \leq y*z$

holds in the BCI-algebra. We first prove the following

Theorem 1. The BCI-algebra is characterized by BCI $2\sim 5$ and (6).

Proof. (6) implies the following results:

(7) If $y \leq z$, then $y * x \leq z * x$.

(8) If $x \leq y$, $y \leq z$, then $x \leq z$.

By (6) and (7), we have

 $(9) \quad ((y*x)*(z*x))*u \leq (y*z)*u.$

We substitute y * u for z in (9), then by BCI 2, we have

(10) $(y * x) * ((y * u) * x) \leq u$.

In formula (10), let x=y, y=x*z, and u=(x*y)*z, then $((x*z)*y)*(((x*z)*((x*y)*z))*y) \leq (x*y)*z$.

The second term of the left side is equal to 0, hence if $x * y \le z$, i.e. (x*y)*z=0, then in the formula above, the right side is equal to 0, so we have $x*z \le y$ by BCI 5. Therefore, we have

(11) If $x * y \leq z$, then $x * z \leq y$.

Hence, by (11) and (6),

BCI 1 $(x*y)*(x*z) \leq z*y$.

It is obvious from [1] that the converse holds. The proof of Theorem 1 is complete.

By Theorem 1, we have the following

Theorem 2. A BCK-algebra is characterized by BCI $2\sim4$, BCI 6 and (6).

In [1], we proved that

(12) $(x*y)*(x*(z*(u*y))) \leq z*u$

holds in the BCI-algebra. We show the following

Theorem 3. A BCI-algebra is characterized by BCI $3 \sim 5$ and (12).

Therefore we also have the following

Theorem 4. A BCK-algebra is characterized by BCI 3, 4, 6, and (12).

We shall prove Theorem 3.

Proof. In (12), let x=x*(x*y), z=u=x, then

 $((x*(x*y))*y)*((x*(x*y))*(x*(x*y))) \le x*x.$

Then by BCI 3 and 5, we have $x * (x * y) \leq y$, which is BCI 2. From (12), we have the following result

(13) if $x \leq z * (u * y)$ and $z \leq u$, then $x \leq y$.

In (12), if z=u, then $x*y \le x*(z*(z*y))$. This formula has the form of $x \le z*(u*y)$ by putting x*y=x, x=z, z=u, and u*y=y. Hence if $x \le z$ (this means $z \le u$ in (13)), then $x*y \le z*y$. Therefore we have

(7) If $x \leq y$, then $x * z \leq y * z$.

(8) If $x \leq y$, $y \leq z$, then $x \leq z$.

Let u=z in (12), then $x*y \le x*(z*(z*y))$, and by (7), we have (14) $(x*y)*u \le (x*(z*(z*y)))*u$.

Next, put x=y*x, y=z*x, z=y, and u=y*z in (14), then

 $((y*x)*(z*x))*(y*z) \leq ((y*x)*(y*(z*x))))*(y*z).$

The right side of the above formula is equal to 0, since it is obtained by substituting y for x and z, x for y and z for u in (12). Hence we have

(6) $(y*x)*(z*x) \leq y*z$.

Therefore by Theorem 1, we have Theorem 3 and complete the proof.

Remark. We shall show that $BCI 1 \sim 5$, (6), (8), and (11) imply $(x*y)*z \leq (x*z)*y$, and hence (x*y)*z = (x*z)*y.

By BCI 1, (6) and (8), we have $((x*y)*z)*((x*u)*z) \leq (x*y)*(x*u) \leq u*y$. Hence by (11),

 $((x*y)*z)*(u*y) \leq (x*u)*z.$

Let u = x * z in the formula above, then

 $((x*y)*z)*((x*z)*y) \leq (x*(x*z))*z.$

Then the right side is equal to 0, hence we have

$$(x*y)*z \leq (x*z)*y.$$

By BCI 4, we have (x*y)*z=(x*z)*y. A proof of this formula is given in [1].

Reference

[1] K. Iséki: An algebra related with a propositional calculus. Proc. Japan Acad., 42, 26-29 (1966).