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1. Introduction and Summary. A measure has been conceived
as a real-valued, usually non-negative set function, whose notable
example is the Lebesgue measure. The purpose of this paper is to
generalize the notion of a measure to a set function taking values
in a topological additive group and to state how such a measure can
be extended and completed along the line of the Lebesgue measure
theory.

The existence of the Lebesgue measure is, as is well known,
verified by at first considering a measure defined for rather simple
sets (e.g. half open intervals in one-dimensional case) and next
extending it to a measure defined for more complicated sets (i.e.
Borel sets or so-called Lebesgue measurable sets), where the outer
measure plays an essential role. The construction of the Lebesgue
measure is accomplished by completion of the Borel measure,

In this paper, given a ring R, a topological additive group G
and a G-valued measure ¢ on R, we shall define an outer measure,
in a generalized sense, p* on the hereditary (i.e. the conditions
XeH and YcX imply Ye H) ring K generated by R. By using
r*, the measure g will be extended to a measure v on, roughly
speaking, a o-ring S generated by R. Finally it will be shown that
the measure v on S can be extended to a measure ¥ on a o-ring S,
which is the completion of v,

One of the main differences of our theory from the ordinary
Lebesgue measure theory is that the ‘non-negativity’ of real numbers
is not available. Difficulties arising from this fact are avoided by
replacing the condition with the ‘bounded variation’ property. Anothor
difference is the fact that the group G in which the measure takes
values does not admit the element ‘e’, We are now dealing with
G-valued measures in the strict sense of the term. For this reason,
a measure ¢ on a ring R can not in general be extended to a measure
on, in the strict sense, the o-ring S generated by R. So our
consideration will be restricted, in place of S, to the class of sets
in S each of which is contained in some set in R.

We shall state the main results with outlines of their proofs
throughout the following sections.
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2. Extension of a measure. A non-empty class of subsets of
a fixed set is called a ring if it contains XU Y and X— Y provided
it contains X and Y, A ring R will be called a pseudo-o-ring if

it contains ﬁ X;, for X;e R,1=1, 2, -...» We shall define a measure
=1

as a map p of a ring R into a topological additive group G satisfying
the following conditions:

1) (XU Y)=u(X)+(Y) for X, Y in R such that XN Y=9,

2) w(X;)—0 as i—c for X;e R,7=1,2, ..., such that X, | ¢
as {—co %

If p is a G-valued measure on a ring R, and if, for any set X
in R and for any neighbourhood U of the unit element of G, there
exists a positive integer n such that if XoX,eR,i=1,2, .-+, m,
and if X;NX,=¢ (j#k), then there exists an integer 7, between 1
and n such that (X;)e U, then we shall say the measure p is of
bounded variation.”

Let M be a fixed set and R be a ring of subsets of M, Then
it is easily verified that there exists the smallest pseudo-o-ring of
subsets of M containing R, i.e. the pseudo-g-ring generated by R,
which will be denoted by .

Let us assume G is a Hausdorff, complete topological additive
group and g is a G-valued measure on the above defined ring R.

One of the main purposes of this paper is to establish the following
result,

Theorem 1. If the measure p is of bounded variation, then
© 18 uniquely extended to a G-valued measure v on S and the
extended measure v is again of bounded variation.

We shall sketch the outline of the proof of this theorem.

Considering, in the beginning, the class R of all sets of the form
U X; which is contained in X,, where X, 1=0,1,2, ---, are sets in

5—{, we obtain the following lemma.

1) This condition 1s equivalent to the one: R contains UXl if X;,1=1,2, -
i=1

are sets in R and if U X;cX for some set X in R,

=1
2) This condltlon is, under the condition 1), equivalent to each of the following
two conditions:
2 wXi)-mX) as 1o for X, X; in R,1=1,2,---, such that X;1 X as

100,

2) 43 X:)= S ux) for Xie®,i=1,2, -, such that X;n Xe=g(jxh)

and nX@egl

where ‘Xil ¢ asioeo and ‘X;1 X as i— o’ imply that ‘X1DX;>--- and :rlez'=¢’
and that ‘X;cX:c--- and U X;=X" respectively.

3) A non-negative real-valued measure is always of bounded variation.
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Lemma 1. There exists a unique map fi of R into G such
that /J(Lnjl Xi>——>ﬁ<G X,-) as n—oo, of X;,1=1,2, -, are sets in R
4= i=1
and if U X;e R,

i=1

Proof. Under the assumption that the measure ¢ is of bounded
variation,” it can be shown that ;z(U X,.>, n=1,2, ..., forms a
=1

Cauchy sequence in G. Hence, it X= U X;e &, X,e ®, i=1, 2, ---,
we can, G being complete, define ﬁ()f )las the limiting point of the
sequence ;x(fjl X¢>, n=1, 2, -++, which is shown to be independent of
the choice of X,;’s such that Dl X;=X. The uniqueness of the map f#
is obvious, '

Let us consider the map ZZ in Lemma 1 and let 4 be the class
{X|XCY for some set Y in R} of subsets of M (i.e. the hereditary
ring generated by R). Then we can prove the following lemma.

Lemma 2. For any fized set X in I, 'X)={Y | Ye R, YO X}
18 a directed set, when we write Y<Z if and only ©f YDOZ, for
Y, Z in I'(X). Moreover, f(Y), YelI'(X), becomes a Cauchy
sequence tn @,

Assigning the limiting point of the sequence f(Y), Ye I'(X),
to each X in 4, we have the following lemma.

Lemma 3. There exists a unique map p* of I into G having
the following property: if Xe K, Ye R and XCY, then, for any
netghbourhood U of the unit element of G, we can find a set Z in
R such that XCZCY and pu(Z)—p*(X)e U.

Thus we can define a map p¢* of the hereditary ring H generated
by R into G, which is anologous to (but not the same with) the
outer measure in the Lebesgue measure theory.

Let & be the subclass of J defined by {X|Xed, p*(Y)=
(Y NX)+ pu*(Y—X) for any set Y in 4}, which may be understood
to be the class of the measurable sets with respect to p*.

Then it can be verified that S’ is a pseudo-o-ring containing (but,
in general, not generated by) R and that the map z* has the following
properties:

Lemma 4. p*(X)=p(X) for any X in R.

Lemma 5. p*(XUY)=p*X)+p*(Y) for X, Y in & such that
XNY=¢.

4) For our present purpose to prove Lemma 1, this condition can be replaced
by a slightly weaker one: if Xe R, X;eR, X>X;,1=1,2,---, and X;NXy=¢ for
jxk, then, for any neighbourhood U of the unit element of G, we can find a
positive integer 4o such that (X;)€ U for any ¢=%. The bounded variation property
of the measure yp is used in proving Lemma 2.
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Lemma 6. p*(X;)—p*(X) as i—co for X, X; in H,1=1,2, «--,
such that X; 1 X as t—s 00 500

Corollary. p*(X;)—0 as 1—c for X;e8,1=1,2,--, such
that X; | ¢ as i—co,

This implies that the restriction »" of p* to & is a G-valued
measure defined on the pseudo-o-ring &', Since S is contained in &',
the restriction v of p¢* on & is also a measure. Lemma 4 shows
that these measures are extensions of p.

Thus we can prove that there exists at least one G-valued measure
v on § which is an extension of g, It is also verified that such an
extension is uniquely determined and that the measure v is of bounded
variation, which accomplishes the verification of the theorem.

Remark. As is seen above, there exists a measure v on the
pseudo-o-ring &’ which is an extension of g (and is also an extension
of v), but the uniqueness of v’ no longer holds for &’.

3. Completion of a measure. Let the notations in section 2
be reserved and let J] be the class of all sets N such that NcX
for some set X belonging to the class J,={X|XeS,v(Y)=0 for
any set Y in S such that Yc X}. Then we have the following
theorem.

Theorem 2. Let S be the class {(X—N)UN—-X)|XeS,Ne Ji}.
Then S is a pseudo-o-ring containing S together with I and there
exists a unique G-valued measure ¥ on S satisfying the following
conditions:

1) ¥(X)=p(X) if XeS,

2) Y(N)=0 if Nedl.

Before giving the proof, we shall give some remarks which are
well known. Defining X+ Y and XY by (X—Y)U(Y—X)and XNY,
respectively, for each pair X, Y of subsets of M, the class ¥ of
all the subsets of M becomes a ring in the algebraic sense of the
word, and a class 4 of subsets of M is a ring in the set theoretical
sense if and only if 4 is an algebraic subring of .

In the terminology in the above remarks, it can be seen that JI
is an ideal of the ring 9, so that S, which may be written as a
sum of a subring S and an ideal JI of ., is a subring of M and
consequently is a ring in the set theoretical sense.

Proof of the theorem. The proof of the fact that S is a ring
being given above, we shall show that S contains N X; for X;e S,
- =1
©=1,2, ++-, which assures us that & is a pseudo-o-ring.

5) Refer to the footnote 2).

6) A regular outer measure in the Lebesgue measure theory has this property
([1] p. 83).
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By definition, we can write, for =1, 2, ..., X;=Y,;+ N,, where
Y, is a set in S and N; is a subset of M which is contained in some
set Z; in S of which any subset W belonging to S satisfies the
condition ¥(W,)=0. The formula m X.cY,UZ €S implies that we
may assume that N;, 1=1,2, ---, are contamed in some ﬁxed set in
S Then we have Ne J] if we write N= U N,. When ﬂ X, and
n Y are denoted by X and Y respectlvely, we get X = ﬂ ((Y —N)U
(N Y)Hc n (Y;UN)=YUN and XD ﬂ (Y, —N)= Y— N, which
give us X— YCN and Y—XCN. Thus we have X+ Y=X—-Y)U
(Y—X)c N which implies that X+ Y e 71, and accordingly we have
N X;=X=Y+(X+Y)eS+J1=S. The fact that S contains S and
Z‘J_Zl is obvious.

The existence of the measure U is shown as follows. It is easily
seen that J,=S8NJ] and that there exists a unique mapy, of the
residue class ring S/Jl, into G such that v(X)=v(X) if the residue
class X contains X. Let ¢ be the canonical isomorphism of S/J1=
(S+ID/T onto S/T,=S/(SNT). Putting, for X e S, 5(X)=vy(o(X)),
where X is the residue class containing X, we obtain the measure
v required. The uniqueness of the measure VU is clear and thus the
theorem is proved.

This measure ¥, which corresponds to the completion of v in the
Lebesgue measure theory, can be proved to be of bounded variation.
It is also seen that 7] coincides with the class {X|Xe S, 5(Y)=0
for any set Y in S such that Yc X}, which implies that the com-
pletion ¥ of ¥ concides with 1.”

We shall state the following theorem without proof.

Theorem 3. If G satisfies the first condition of countability,
then S and U coincide with S’ and p* (strictly speaking, the
restriction of p* on S') respectively.

We shall close this paper by noticing that the Lebesgue measure
can be constructed along the line of these theorems taking some sets
‘of measure c’ into consideration.
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T7) The completeness of a measure may be defined as follows: given a measure
2 on a ring 2 taking values in a topological additive group F, the measure 2 is
complete if the ring P contains the class L={X|Xe P, (Y )=0 for any set ¥ in &
such that YcX}. Then our measure v is a complete measure which is an extention
of v.



