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1. Introduction and Summary. A measure has been conceived
as a real-valued, usually non-negative set function, whose notable
example is the Lebesgue measure. The purpose of this paper is to
generalize the notion of a measure to a set function taking values
in a topological additive group and to state how such a measure can
be extended and completed along the line of the Lebesgue measure
theory.

The existence of the Lebesgue measure is, as is well known,
verified by at first considering a measure defined for rather simple
sets (e.g. half open intervals in one-dimensional case) and next
extending it to a measure defined for more complicated sets (i.e.
Borel sets or so-called Lebesgue measurable sets), where the outer
measure plays an essential role. The construction of the Lebesgue
measure is accomplished by completion of the Borel measure.

In this paper, given a ring , a topological additive group G
and a G-valued measure /2 on , we shall define an outer measure,
in a generalized sense, t2* on the hereditary (i.e. the conditions
X e d( and YX imply Ye q() ring d( generated by .@. By using
/2", the measure /2 will be extended to a measure v on, roughly
speaking, a a-ring generated by . Finally it will be shown that
the measure v on can be extended to a measure on a a-ring ,
which is the completion of v.

One of the main differences of our theory from the ordinary
Lebesgue measure theory is that the ’non-negativity’ of real numbers
is not available. Difficulties arising from this fact are avoided by
replacing the condition with the ’bounded variation’ property. Anothor
difference is the fact that the group G in which the measure takes
values does not admit the element ’’. We are now dealing with
G-valued measures in the strict sense of the term. For this reason,
a measure/2 on a ring can not in general be extended to a measure
on, in the strict sense, the a-ring generated by . So our
consideration will be restricted, in place of , to the class of sets
in each of which is contained in some set in .

We shall state the main results with outlines of their proofs
throughout the following sections.
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2. Extension of a measure. A non-empty class of subsets of
a fixed set is called a ring if it contains X Y and X-Y provided
it contains X and Y. A ring will be called a pseudo-a-ring if

it contains X, for X e , i-1, 2, ....) We shall define a measure
i-----1

as a map/2 of a ring into a topological additive group G satisfying
the following conditions.

1) (X Y)-(X)//(Y) for X, Y in

_
such that X

2) (X)0 as i- for Xe , i-1, 2, ..., such that X
as i- )

If / is a G-valued measure on a ring , and if, for any set X
in

_
and for any neighbourhood U of the unit element of G, there

exists a positive integer n such that if XX e ., i- 1, 2, ..., n,
and if XX- (jk), then there exists an integer i0 between
and n such that p(X0)e U, then we shall say the measure is of
bounded variation.)

Let Mbe a fixed set and be a ring of subsets of M. Then
it is easily verified that there exists the smallest pseudo-a-ring of
subsets of M containing _q, i.e. the pseudo-a-ring generated by
which will be denoted by .

Let us assume G is a Hausdorff, complete topological additive
group and ;u is a G-valued measure on the above defined ring

One of the main purposes of this paper is to establish the following
result.

Theorem 1. If the measure [ is of bounded variation, then
is uniquely extended o a G-valued measure on and the

extended measure is again of bounded variation.
We shall sketch the outline of the proof of this theorem.
Considering, in the beginning, the class of all sets of the form

U X which is contained in X0, where X, i-0, 1, 2, ..., are sets in

L, we obtain the following lemma.

1) This condition is equivalent to the one: contains JX if X, i=1, 2,...,

are sets in and if t3 XX for some set X in ..
i=l

2) This condition is, under the condition 1), equivalent to each of the following
two conditions:

2’) p(X)p(X) as i for X,X in ,i=1,2,-.-, such that XX as

2") Z X ==X(X) for X e, i=l, 2, ..-, such that X X=(j#k)

and Xe,
where ’Xi $ as i’ and ’X X as i’ imply that ’XX. and X=O’

i=l
and that ’XX... and X=X’ respectively.

3) A non-negative real-valued measure is always of bounded variation.
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Lemma 1. There exists a unique map fi of into G such

)that l X X as n-- if X, i-1, 2, ..., are sets in

and if U Xe.
i=1

Proof. Under the assumption that the measure/ is of bounded

variation,) it can be shown that g(: X), n-l, 2,.--, forms a

Cauchy sequence in G. Hence, if X= LJ X e c, X e , i-1, 2, ..-,
i=1

we can, G being complete, define fi(X) as the limiting point of the

X -1, whieh is shown to be independent ofsequence i --the choice of X’s sueh that U X-X. The uniqueness of the mapfi
is obvious.

Let us eonsider the map in Lemma 1 and let ( be the class
{XIX Y for some set Y in N} of subsets of M (i.e. the hereditary
ring generated by N). hen we can prove the following lemma.

Lemma 2. For any fixed set X in Jr, F(X)-- { Y Ye , Y_X}
is a directed set, when we write Y<___Z if and only if YZ, for
Y, Z in F(X). Moreover, fi(Y), YeF(X), becomes a Cauchy
sequence in G.

Assigning the limiting point of the sequence fi(Y), YeF(X),
to each X in d(, we have the following lemma.

Lemma . There exists a unique map l*of d( into G having
the following property: if Xe Jr, Y e and X Y, then, for any
neighbourhood U of the unit element of G, we can find a set Z in
: such that XZY and t(Z)-I*(X) e U.

Thus we can define a map/* of the hereditary ring d( generated
by into G, which is anologous to (but not the same with) the
outer measure in the Lebesgue measure theory.

Let q’ be the subclass of d( defined by {XI Xed(,/*(Y)-
I*(YX)+I*(Y-X) for any set Y in dr’}, which may be understood
to be the class of the measurable sets with respect to /*.

Then it can be verified that q’ is a pseudo-a-ring containing (but,
in general, not generated by) and that the map ft* has the following
properties.

Lemma 4. I*(X)-I(X) for any X in
Lemma 5. I*(X Y)-/*(X)/ I*(Y) for X, Y in 3’ such that

XY=.
4) For our present purpose to prove Lemma 1, this condition can be replaced

by a slightly weaker one: if X:,X:,XX,i=I, 2, ..., and XjNXk= for
3"=k, then, for any neighbourhood U of the unit element of G, we can find a
positive integer i0 such that/(X) e U for any i>=io. The bounded variation property
of the measure / is used in proving Lemma 2.
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Lemma 6. /*(X)-a*(X) as i-- for X, X in (, i---1, 2, ...,
such that X T X as i-.),)

Corollary. [*(X)--O as i-- for X e r, i-1,2, ..., such
that X as i--,.

This implies that the restriction ’ of * to ’ is a G-valued
measure defined on the pseudo-a-ring 2’. Since is contained in ’,
the restriction of * on is also a measure. Lemma 4 shows
that these measures are extensions of

Thus we can prove that there exists at least one G-valued measure
on which is an extension of g. It is also verified that such an

extension is uniquely determined and that the measure is of bounded
variation, which accomplishes the verification of the theorem.

Remark. As is seen above, there exists a measure ’ on the
pseudo-a-ring ’ which is an extension of / (and is also an extension
of ), but the uniqueness of ’ no longer holds for

:o Completion of a measure. Let the notations in section 2
be reserved and let be the class of all sets N such that NX
for some set X belonging to the class 0={X Xe , (Y)-0 for
any set Y in such that YX}. Then we have the following
theorem.

Theorem 2. Let be the class {(X-N) (2 (N-X) IX
Then is a pseudo-a-ring containing together with and there
exists a unique G-valued measure on satisfying the following
conditions"

1) (X)-(X) if Xe3,
2) (N)-0 ifNe.
Before giving the proof, we shall give some remarks which are

well known. Defining X/ Y and XY by (X- Y) [2 (Y-X) and X Y,
respectively, for each pair X, Y of subsets of M, the class of
all the subsets of M becomes a ring in the algebraic sense of the
word, and a class of subsets of M is a ring in the set theoretical
sense if and only if / is an algebraic subring of

In the terminology in the above remarks, it can be seen that
is an ideal of the ring /, so that , which may be written as a
sum of a subring and an ideal 7 of /, is a subring of 2/ and
consequently is a ring in the set theoretical sense.

Proof of the theorem. The proof of the fact that 2 is a ring

being given above, we shall show that contains
i=l

i--1, 2,..., which assures us that is a pseudo-a-ring.
5) Refer to the footnote 2).
6) A regular outer measure in the Lebesgue measure theory has this property

(1 p. 53).
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By definition, we can write, for i-1, 2, ..., X- Y+N, where
Y is a set in and N is a subset of M which is contained in some
set Z in of which any subset W belonging to satisfies the

condition (W)-0. The formula X Y kJ Z e q implies that we

may assume that N, i-1, 2,..., are contained in some fixed set in. Then we have Ne if we write N=kJN. When X and

Y are denoted by X and Y respectively, we get X- ((Y-N)
i=l i=l

(N- Y)) f3 (YJ N)- Y[J N and X (Y-N)- Y-N, which
i=1 i=1

give us X-YN and Y-XN. Thus we have X/ Y=(X- Y) U
(Y-X)N which implies that X/ Y e , and accordingly we have

X-X--- Y+ (X+ Y) e 3+ ?-. The fact that contains 3 and
i=1: is obvious.

The existence of the measure is shown as follows. It is easily
seen that 0--3 and that there exists a unique map0 of the
residue class ring q/0 into G such that o(X)-(X) if the residue
class X contains X. Let ? be the canonical isomorphism of 3//-
(q+ 7)/ onto 3/0-3/( /). Putting, for X e -, (X)-,0((X)),
where is the residue class containing X, we obtain the measure

required. The uniqueness of the measure is clear and thus the
theorem is proved.

This measure , which corresponds to the completion of in the
Lebesgue measure theory, can be proved to be of bounded variation.
It is also seen that coincides with the class {XI Xe , (Y)-0
for any set Y in 3 such that YX}, which implies that the com-

pletion D of concides with .)
We shall state the following theorem without proof.
Theorem 3. If G satisfies the first condition of countability,

then and coincide with ’ and [* (strictly speaking, the
restriction of l* on ’) respectively.

We shall close this paper by noticing that the Lebesgue measure
can be constructed along the line of these theorems taking some sets
’of measure ’ into consideration.
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7) The completeness of a measure may be defined as follows: given a measure
on a ring taking values in a topological additive group F, the measure 2 is

complete if the ring contains the class ={XIXe, 2(Y)=O for any set Y in P
such that YcX}. Then our measure is a complete measure which is an extention
of .


