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In this paper, to take away the notion of covering system and
we consider about the completion theory of topological space with
a set consisting of some filters instead of Cauchy filters concerning
covering system.

Thus, we get a generalization of author’s paper [5, but using
method is not different almost at all.

By this generalization, Alexandroff one point compactification is
included, as a special case, in the completion.

A family consisting of subsets of X is a filter base in X if
for every A, Be[,C_AB for some Ce[ and fe.

A filter [ in Xis a filter base in X such that if AB and
Be then Ae.

For every filter base in X, the family {AIXAB, Be [} is
a filter in X, that is said to be generated by [.

If X*X then a filter in X is a filter base in X* and generates
a filter in X*. Denote it by [*.

In a topological space X, let’s denote by 92(x), the neighborhood
system of x e X, and by (R)(X), the family of all open sets of X.

A filter base in a topological space X converges to x in X if
and only if the filter generated by contains the neighborhood system
(x) of x.

For a filter base in a topological space X, {G]Ge (R)(X), G_A,
A e } is a filter base, so generates a filter, we will denote it by .
Thus [ converges to x if and only if [ converges to x.

We consider a topological space X, with a set M consisting of
some filters that satisfies the following three conditions
M1) if eM and fl_ then eM,
M2) if eMthen [eM,
M3) for all point x of X, (x) e M.

Let’s denote such a topological space X, by (X; M). In (X; M),
if eMconverges to no point, then [ is a leg. If (X;M) has no
leg, (X; M) is complete.

A completion (X*; M*) of a space (X; M) is such a space that
C1) XGX*,
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C2) (X*; M*) is complete,
C3) for every open set G of X, there corresponds an open set G*
of X* such that G*X-G, and {G* Ge (R)(X)} become a base of
open sets of X*,
C4) for every [eM*, {AXIAeV}eM, and for every eM,
:* e M*,
C5) if for every e M converging to a point z of X*, G e (R)(X),
then ze G*,
C6) e M converges to only one point in X* and for every point
z of X*X, there exists at least one leg converging to x.

Put (R)*-- {G* G e. (R)(X)}.
Let there exists a completion (X*; M*) of (X; M).
If a leg e M containing a leg e M converges to z in X*, then

fl also converges to x in X*, by the condition C6). So the filter

_.e converges to x too. Let’s denote ,e by .
Thus, using M3), we obtain *eM* and moreover by C4),
{AXIAe_*}eM. From the fact _{AXIAe*} and
M1), we get e M.

Thus, the following proposition holds:
E) if is a leg then

_
is a leg too.

M2) shows that for all leg , --.
A member of [ ( ((X) is called a body of
Then the condition C5) is equivalent to; G e (R)(X) is a body of

a leg eMif and only if for the point x to which converges in
X*,zeG*,-G.

Now, assume a space (X; M) satisfies the above condition E).
A leg is minimal if and only if [-[.
For every G e (R)(X), denote by 9(G), the set {1; minimal leg,

G e [}. Thus for every open sets G, H of X, we get 9(G)9(H)--
9(GH). Put 9(G)UG=G*. So *- and G*H*=(GH)*.
These show that 3*--{G*IGe (R)(X)} is a base of open sets of X*.

We define the set M* as M* { [; filter in X*, {A X]A e [} e M}.
It is easy to see this M* satisfies the conditions M1), M2), M3), and
C4).

For ’eM*, put ={AXIAe’}. Then eM and easily
seeing, an open set G of X belongs to if and only if G* belongs
to ’. Either converges to a point x in Xor is a leg inX. If
converges to a point x in X then f’ converges to x in X*, on the

other hand if is a leg in X then f’ converges to [] in X*. This
shows that (X*; M*) is complete.

If converges to a minimal leg in X*, then []=g and
furthermore f never converges to any point of X in X*.
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(X*; M*) satisfies the former part of the condition C6). Other
conditions are satisfied from our construction of the space (X*; M*).
So we get

Theorem 1. (X; M) has its completion if and only if the
following is satisfied; if is a leg then is also a leg.

Let (X*;M*) and (X+;M/) are both completions of (X;M).
Then there exists a mapping f of (X*; M*) onto (X+; M+) such that
f(x)- x for every x e X and for any x e X* X, {A X A e (x)} is
a leg in X and converges to some point y in X+, thus f(x)-y.

Then, for every G e (R)(X), f(G*)-G+ by the condition C5), which
shows that f is topological and so we obtain;

Theorem 2. A completion is uniquely determined by a space
(X; M).

Let (X*; M*) be a completion of (X; M) and f be a continuous
mapping of (X; M) into a topological space Y such that for every
y e Y, and for any neighborhood V of y, there exists some neighbor-
hood U of y and U_V. If for every leg [eM, {f(A)[A
converges to some point of Y, then f is extendible on (X*;M*);
there exits a extention F of f, provided for every x X*X, F(x)
is arbitraly point in Y, to which {f(A) IA e } converges, for the
minimal leg converging to x in X*.

Theorem :. Let f is a continuous mapping of (X; M) to have
completion (X*; M*) into a topological space Y such that for every
y e Y and for every V e (y), U_ V for some Ue ?(y). Then there
exists a continuous mapping F satisfing that for every x e X,
f(x)-F(x), if and only if {f(A) A e } converges to some point of
Y, for every leg e M.

Next, we consider the product space of our space (X; Mx),
The product (X; M) of our space (Xx; Mx) is such that;

P1) X= [IXx and X has the weak topology,
P2) eM if and only if {Px(A) IAe}eMx, provided, Px is the
projection of X into its 2-component Xx.

Let’s denote the product of (Xx; Mx) by ]-[(Xx; Mx). Above M
satisfies obviously the conditions M1), M2), and M3).

As X has weak topology, e M converges to x e X if and only
if {P(A) IA e } converges to P(x) e X. Thus we get; a product
is complete if and only if its every component is complete.

Theorem 4. A product ]-I(Xx; M) of (X; M) is complete if
and only if every component (Xx; Mx) is complete.

A filter e M is minimal in M if and only if there are no filter
of M that is properly contained in .

Then, in a product (X; M) of spaces (Xx; Mx), e M is minimal
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if and only if {Px(A)]A e } is minimal in Mx and is generated by
{1-IP(A) A e }.

In T. space, every filter converges to at most one point.
These results show that;
Theorem 5. Assume that (X*; M2) is the completion of (Xx; Mx)

and they are both T.. Then the product I-[(X M of (X*; M*)
is the completion of the product l-[(Xx; Mx) of (Xx; Mx).

In general, for every open sets G and H, if GH--=- then
G* H*=.

If there are two legs [ and such as for every bodies Ve
and Weg, VW:/=, then {VW!Ve[, Weg} is also in M.
Either this filter converges or is leg. If it is a leg then
E{VW[Ve, We}]=E]. So we get

Proposition. The completion (X*; M*) of T. space (X; M) is
T. if and only if for any point xeX and for every leg [eM,
V( W-- for some neighborhood Ve (x) and some body W of
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