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O. Introduction. The idea of semiclosure operations is useful
for finding the smallest equivalence or congruence relation which
contains a given relation p. It is obtained by applying to p the
reflexive operation R, symmetric operation S, compatible operation C,
and transitive operation T 2, 3. There are many combinations
of operations which give the same equivalence or congruence relation,
for example, RST and RTST. Using the concept of free semigroup
and defining relations we find all words which when interpreted as
operations give equivalence and congruence relations; we study the
structure of the semigroup generated by R, S, T or R, S, T, C. The
defining relations when interpreted as operations are identities. Some
results of this paper were published in 2, 3 without proof. Before
entering the main discussion we introduce the concept of annexed
product or coproduct.

Let G be a groupoid. By G we mean adjoining an identity to
G even if G already has one. The annexed product of two groupoids
A and B is the direct product of A and B minus the element (1,1).

A B=AB--{(1, 1)}.
G is isomorphic to AB iff G contains two subgroupoids fi,/
isomorphic to A and B respectively such that every element of G can
be uniquely expressed as a product ab, where a e fi. and b e/, and
the elements of fi and / commute.

1. Equivalence-Semigroup. In this section we study the struc-
ture of the semigroup generated by R, S, T, 3. Let Q* be the
semigroup generated by R, S, T, subject to the defining relations (1,1).
(1.1) R=R, S=S, T-- T, RS=SR, RT-- TR, STS= TST--ST.

Theorem 1.1. Q* is composed of nine elements.
(1.2) R, S, T, RS, RT, ST, TS, RST, RTS.

Proof. Since R commutes with S and T, if a word contains R,
then it has the form R. W(S, T) where W(S, T) is a word of S and
T. Let W(S, T) be a word of S and T with length n:>2. By induction
on n we can prove W(S, T) is either ST or TS.

Let I* be the subsemigroup {S, T, ST, TS} of Q*.
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Corollary. Q* is the annexed product of I* and {R}.
I* is isomorphic to No. 73 of p. 25 of 4 or No. 100, p. 27 of 5J.
The greatest semilattice-decomposition of I* is {S}, {T}, (ST, TS}.
Each congruence class is a null subsemigroup of I*, 6,
The greatest semilattice-decomposition of Q* is

{S}, {T}, {R}, {RS}, {RT}, {ST, TS}, {RST, RTS}.
Each congruence class is a null subsemigroup of Q*. The greatest

factor semilattice of Q* is isomorphic to the semilattice of all non-empty
subsets of a set of three elements with respect to inclusion; and the
greatest factor semilattice of Q* is isomorphic to the annexed product
of {R} and the greatest factor semilattice of I*.

2. Congruence-Semigroup. Let N* be the semigroup generated
by R, S, T, C with (1.1) and
(2.1) C--C, RC--CR, SC--CS, CTC= TCT=CT

Theorem 2.1. N* is composed of twenty-five elements.
(2.2) S, T, C, SC, ST, TS, CT, TC, STC, CTS, TCS, SCT
(2.3) R, RS, RT, RC, RSC, RST, RTS, RCT,

RTC, RSTC, RCTS, RTCS, RSCT.
Proof. Same as Theorem 1.1, using induction on word length.
Let U* be the subsemigroup of twelve elements (2.2).
Corollary. N* is the annexed product of U* and {R}.
The greatest semilattice-decomposition of N* is

{S}, {T}, {C}, {SC}, {ST, TS}, {CT, TC}, {STC, SeT, CTS, TCS},
{R}, {RS}, {RT}, {RC}, {RSC}, {RST, RTS}, {RCT, RTC},
{RSCT, RSTC, RCTS, RTCS}.

Each congruence class is a null subsemigroup of N*.
3. Compatible Semigroup. Let L* be generated by R, S, C,

C, T with defining relations (1.1) and
(3.1) CC-CC, C}-C, C:-C, RC-.CR, RC-CR, SC-CS,

SC,=C,S, CTC= TCT=CT, C, TC,= TC,T=C,T.
Theorem 3.1. L* is a semigroup consisting of sixty-nine

elements. L* is the annexed product of W* and {R} where W* is
the subsemigroup of L* generated by S, C,, C,, T. W* consists of
thirty-four elements:

S, C,, C, T, SC, SC, ST, TS, CC, CT, TC, CT,
TC, SCC, SCT,

STC, TSC, CTS, SCT, STC, TSC, CTS, CCT, CTC,
CTC, TCC, SCCT,

SCTC, CCTS, SCTC, STCC, CTSC, CTSC, TSCC.
Proof. As Theorem 1.1.
4. The Partial Ordering of N*. From Lemma 2.1 of [2 we

learn that the set of all semiclosure operations on a set E form a
partially ordered semigroup. Multiplication is by composition of



690 T. TAMURA and R. DICKINSON [Vol. 42,

operations, one applied after another, and the partial ordering is
accomplished by _. P<_Q iff pPpQ for all relations p on E.

N* is ordered by saying P<Q (strict), PcQ in N*, whenever
P<_Q where now P and Q are considered as semiclosure operators on
a set E having more than two elements.

N* is naturally ordered in the sense that if A, B e N*, and A_>B,
then there is C e N* such that A=CB or A=BC.

Theorem 4ol. N* is a semilattice ordered semigroup and
satisfies the distributive laws:

(XV Y)Z=-XZV YZ and Z(XV Y)-ZXVZY
where V means least upper bound.

We consider first U*. The diagram in [2 shows that U* is a
semilattice with respect to the partial ordering.

To show the distributive laws we consider only the cases where
X and Y are incomparable. The cases are:

SV T, SvC, Sv TC, SvCT, TvC, TvSC, CV TS, CvST,
TSvSC, TSv TC,

TSvCT, SCv TC, SCvCT, STV TCS, STvCT, STvCTS,
TCSvCT, STCvCTS.

The distributive laws in these cases are done by direct computation.
One also verifies by computation that

XRv YR-(XV Y)R and XV YR-(XV Y)R
hold for X and Y in U*.

Using these results with the fact that R commutes we prove
(XV Y)Z=XZV YZ and Z(XV Y)-ZXVZY for all X, Y, Z e N*.

Corollary. Q* is a semiIattice ordered semigroup and satisfies
the distributive laws.

Proof. Q* is a subsemigroup of N* and also a subsemilattice
with respect to the partial ordering on N*.

From [2 RST is the greatest element of Q* and RSCT is the
greatest element of N*.

5. The Equivalence and Congruence Operations Semigroup.
Let E be a set with elements. Let S be the set of all relations
on E. Let R, S, T, and C be operations on S defined respectively
by (4.1), (4.2), (4.5), and (4.13) of [2. Q, a homomorphic image
of Q*, is the semigroup generated by R, S, and T. Similarly, N is
the semigroup generated by R, S, T, and C. If for any X, Y in
Q X=/= Y in Q*, one can find a p e S and pXpY, then we say Q
is distinct on S. If there is a p e S such that for all pairs X, Y
in Q X= Y in Q*, and pXcpY, then we say Q is strongly distinct
on S. Similar definitions apply to N.

Now, as a trivial case where ]E I-l, N consists of one element,
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since R-- S-- T= C. Also, Q has only one element.
Theorem 5.2. Q consists of six elements R, S, T, RS, ST, TS.

In this case RS=RTS=RST and R-- RT. All the elements, however,
are not strongly distinct.

Corollary/. N. is not distinct on S.
Theorem 5.. Q and Q are isomorphic to Q*. All the

elements of Q and Q, are distinct.
Proof. Let E= {a, b, c} and use p= {(a, b), (b, a)}, p= {(a, b), (c, a)},

p= {(a, b), (a, c)}. If E={a, b, c, d}, use p. and p to give distinctness.
Lemma 1. If p gives strong distinctness on Q then there

exists (a, b), (b, c)e p and ab, ac, bc.
Proof. If there were no such pair, pR= pRT. We call this pair

the transitivity pair.
Definition. Sym p= {X: Xpt or tpX for some t}. sym p =the

number of elements in Sym p. Sym p can be called the symbol set
of p. is the identity relation on E (the diagonal).

Lemma 2. If p gives strong distinctness on Q, then
Sym (p- t) I=/: n.

Proof. Suppose Sym (p- t) I= n. Then pST= pRST.
Theorem 5.4. Q3 is not strongly distinct.
Proof. Use Lemma 1, Sym (p-t)I--3 and Lemma 2.
Lemma 3. IflSym(p-t) l=3 and p has a transitivity pair

then pRST=pRTS.
Proof. Let Sym (p-)={a, b, c}. Then pRST--pRTS--{(a, b),

(b, a), (b, c), (c, b), (a, c), (c, a)} U t.
Theorem 5.5. Q4 is not strongly distinct.
Proof. Suppose p gives strong distinctness. Lemma I implies

Sym (p-t) l>__3. Lemma 2 implies Sym (p-t)1=/=4 .’. Sym (p-t)
3. Lemma 3 implies pRST=pRTS.

Theorem 5.6. Q5 is strongly distinct and isomorphic to Q*.
Proof. p=-{(a, b), (b, c), (d, c)} where E--{a, b, c, d, e}.
Theorem 5.7. N and N4 are not strongly distinct. Since Q

is a subsemigroup of N we have from Theorems 5.4 and 5.5 that
N3 and N4 are not strongly distinct.

Theorem 5.8. N5 is not strongly distinct.
Proot. Assume p gives strong distinctness. Lemma 2 and Lemma

3 imply Sym (p-)l =4. Assume Sym (p-)={a, b, c, d}. Also by
Lemma 1 p has a transitivity pair. We may assume it to be (a, b),
(b, c). One of the following sets must be a subset of p.

1) {(a, b), (b, c), (d, a)} 4) {(a, b), (b, c), (a, d)}
2) {(a, b), (b, c), (d, b)} 5) {(a, b), (b, c), (b, d)}
3) {(a, b), (b, c), (g, c)} 6) {(a, b), (b, c), (c, d)}

One can verify that pRSTI=17. If o) is the universal relation, let
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Sym w {a, b, c, d, e}, w ]-- 25 .’. o)-pRST I-- 8. w--pRST contains
all off diagonal pairs which have an e, for example (e, a) or (b, e).
If pC (w-pRST)= then pCRST--pRST; if pC (w--pRST)
then Sym (pC- t) I= 5. But then by Lemma 2, (pC)ST-- (pC)RST
or pCST--pCRST.

Theorem 5.9. N3 is distinct.
Proof. This result was obtained by a computer (CDC 3600)

calculation. The semigroup which may be used is given by:

a a a

a a a

a a c

Not all semigroups of order three gave distinctness. What can
be said about semigroups which collapse N? For every there exists
at least one semigroup which collapses N, namely the null semigroup.

Theorem 5.10o N4 is distinct.
Proof. Adjoin an identity to the semigroup used in N.
Theorem 5.11. N for _6 is strongly distinct.
Proof. A semigroup G is defined as follows: G--{a, b, c, d, e} t2 F,

where F is arbitrary and non-empty and {a, b, c, d, e} D F=. b=
e, xy-a if x eb and y eb. Let p-{(a, b), (b, c), (d, c)}.

Corollary. Q for 6 is strongly distinct.
Proof. Q is a subsemigroup of N.
Note. L* is partially ordered in the same sense as N*.
Unsolved problem. Does there exist a semigroup such that

L-L*?
Acknowledgement. Thanks to Mr. R. B. Merkel for some of

this computations and help in general.
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