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1. Introduction. One of the early decomposition theorems
for semigroups was given by David McLean 2 and may be stated
as follows:

Theorem. An idempotent semigroup S has a greatest semi-
lattice decomposition into rectangular bands.

In his proof McLean defines a relation a on S by
aab if and only if aba=a and bab=b

a is then shown to be the smallest semilattice congruence (abbr.
s-congruence) on S. That is, S/a is a semilattice, and if S/a’ is a
semilattice then a_a’. The most difficult part of this proof is in
showing the transitivity of a. We will give another proof based
on the concept of "content" of a semigroup and a theorem of
T. Tamura [4. Finally we will give another proof of the following
theorem of T. Tamura and N. Kimura [3.

Theorem. A commutative semigroup S has a greatest semi-
lattice decomposition into archimedean semigroups.

2. Contents. Definition 1. Let a, a., ..., a. be elements of a
semigroup S. The "content" of a, a,..., a in S, C(a, a.,...,
is the set of elements of S which can be expressed as a product
involving all the elements a, a:,..., a.

From the definition it is obvious that Cs(a, a, ..., a} is a
subsemigroup of S. As a special case we consider a band.

Lemma 1. Let S be a band. Then any content Cx, x,...,
is a rectangular band.

To prove Lemma 1 it is sufficient to prove Lemma 2.
Lemma 2. Let F be a free band generated by a,a,...,

A content Ca, a:,..., a} is a rectangular band.
However we will prove Lemma 4 which is a more generalized

form of Lemma 2.
Let F be the free band generated by G={gx:2 e A}.
Definition 2. If Xe F, let G(X)={gx e G: X=gxlgx2 gx.}. 1)

Lemma 3. If X, Ye F then
G(XY)=G(X) U G(Y)

1) A similar definition was used by Green and Rees [1].
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(ii) G(XY)=G( YX).
The proof is a trivial result of Definition 2.
Lemma 4. If X, YeF, then G(Y)_G(X)= >XYX:X.
Proof. Suppose X e F, a e G, and X: UaV where U, Ve F may

be empty for convenience of proof. Then
X= UaV= U(a V)(a V)=Xa V.

The proof of this Lemma is by induction on the length of Y.
If the length of Y is 1, then G(Y)={a} and a eG. Hence

X= UaV and using (1)
XYX XaX Xa(Xa V) XaV=X.

Now assume the lemma holds for all X, Z with the length of Z
less than or equal to n where G(Z)_G(X). Suppose Y has length
n+l and G(Y)_G(X). Y=aZ where a e G and Ze F. By Lemma 3

G( Y)=G(aZ)=G(Z) U {a}_ G(X)
so we may apply (1)
( 2 XYX=X(aZ)X=XaZXaV=(Xa)Z(Xa) V.
Now G(Z)_G(X)=G(Xa) and the length of Z is n, so by the
induction assumption (Xa)Z(Xa)=Xa which combined with (1) and
(2) gives

XYX=(Xa)Z(Xa) V=XaV=X.
Thus we have proved Lemma 4 and hence Lemma 2. Since

Cs<x, x, ..., x> is a homomorphic image of C<x, ..., x>, we
obtain Lemma 1.

Definition 3. Let S be a semigroup and define relations p
and p on S by arab if and only if a and b are in a content
Csx, x., ..., x> for some x, x, ..., x. Let p be the transitive
closure of p, that is apb if and only if there are a, a:,..., a e S
such that a=a, b=a, and a{pa{+(i= 1, ..., n- 1)[5].

Lemma 5. p is the smallest s-congruence on S.
Proof. It is easy to see that p is an s-congruence. We have

to prove that p is smallest. Let p’ be an s-congruence on S.
Suppose apb. Then a=ao, a,..., a=b such that a{ and a{+ are in
Cx, ...,x{>. We can easily prove that if a{ and a{+ are in
Cs<x, x:,..., x{> then a{p’a{+. Accordingly apb implies ap’b.

Lemma 6. If S is a band, then p=p. That is, p is the
smallest s-congruence on S.

Proof. We know p is reflexive, symmetric and compatible. To
prove transitivity, suppose arab and bpc. By Lemma 1

a=aba; bab=b; c=cbc; bcb=b.
Hence a=aba=a(bcb)a and c=cbc=c(bab)c so a, c e Cs<a, b, c>. There-
fore apse.

3. Bands and Commutative Semigroupso Let a be a relation
defined in 1.
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aab if and only if aba--a and bab=b.
Theorem 1. Let S be a band. Then pl=a. In other words

a is the smallest s-congruence on S.
Proof. If aab, then a and b are in Csa, b, namely apb.

Hence a_p. Next assume apb, that is, a and b are in a content
of S. By Lemma 1, aba--a and bah
By Lemmas 5 and 6, a is the smallest s-congruence.

Theorem 2. Let S be a commutative semigroup. Define a
relation v on S by

avb if and only if a--bx, b-ay for some m>0, n0, x, y e S.
Then v is the smallest s-congruence on S.

Proof. Lemma 5 may be used to prove Theorem 2 as follows.
First prove that v is transitive, and prove that p_v, so p_v. We
can prove v_p since

apa bxpb"+ix abxy a+lypay bpb.
Thus we have
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