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Theorem 66. For each value of j=1,2, let {A'},o 5s... be a
bounded infinite set of complex numbers; let D; be a bounded, closed,
and connected domain such that the closure {2’} has not any point
in common with it; let N; be a bounded normal operator whose point
spectrum and continuous spectrum are given by {1’} and [{27}—
{24YJU D; respectively (in fact, there exist such N,(j=1,2) as we
have already demonstrated); let

Xid)= E((ZI N)hiay 9 (€ {AP}UD;, 1Em;= 00, j=1, 2),

where When m;<oo h;, and g; are arbitrarily given elements in the
complex abstract Hilbert space © under consideration, whereas when
m;=00 {h;,}.>; are so chosen as to satisfy the condition z_}lu(u -
N) % || hju || <oo for any 2¢ {27}u D, (this is possible); let U;Q2)
=R;2)+x;(2) where R;(2) is an integral function; and let I" be a
rectifiable closed Jordan curve containing the sets {A"}UD, and
{A2}U D, inside itself, Then
(54) '—“1 S 1(2)U2(2)d2 E (R( - (Nl)hlay gl) +E (Rl(.a—l)(NZ)h'zm gz)
211 =1 (a—1)] a=t (a—1)]
(lémjéooy j=1y 2)9
the complex line integral along I" being taken counterclockwise; and
moreover the two series on the right both are absolutely convergent
when m;=o0(j=1,2). If, in addition to those hypotheses, there
exists a rectifiable closed Jordan curve C such that {(2P}uD, lies
inside C while 2®}U D, lies outside C, then
my (a—1) (a—1)
55 (G (NDhia, 91) (1N rsay g:) _
(55) =~ ) +3 @=1)
l=m;= 00, j=1, 2).

Proof. Since
LS R()R)d2=0
2ri Jr
and since, as can be found from the Cauchy theorem and the ex-

pansions of x,-(-z—e“’)(j =1, 2) shown in the preceding papers,
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by making use of the complex spectral families {K;(2)} of N,(j=1, 2)
we have
1

1
| vwvma=L| rwr@ar L worma

2wt =1
1 my
+%S {2—1 S{A"”}U ny(A—E)”
Let d, denote the distance between the two point sets I"and {2’} U D;
for each value of j=1,2. Then even if m;=oco, here the chain of
inequalities

:*1—8 {i S{h(”}um(l C)a A gl)}R W

d(Kz(C)hzm g2)}R (l)dz

> WAl 9511 o
P S{—m; 0;(A—0)" C)a 2 & <oco(1el)

holds in accordance with the hypothesis >} H @I =N)7H " | bja || < o0
for ¢ 37} UD,. Since, in addition, R.(2) “and R,(2) are both regular
inside and on I", the final equality above is rewritten

R0
il vevea=31 . o wn UK (Ol 92

33 [ B 4O, 0
= )P, (a 1)
m1 R(a—-l) N h @ R(a—l) N a
=3 ( ((—11))11 ) +Z_}1 ( (05 1);12 9s)
(l=m,<, j=1, 2).
If we now denote by L the length of I" and set M;=sup |R;Q)|
for j=1, 2, then we here have e

1 l (R;a.—l)(NOh/lay gl) ( % ” kla H H g HML<00 (lé’mléoo)

A(K{(Q)jar 95) |

) (a—1)| 271' a=1 ds

and
%ﬁl | (Ri* " (No)hsay 9) | < gi‘ ”km” H-%”ML <o (LEm,= o).
a=t (a—1)| 277: a=1

In consequence, the two series on the right of (54) converge
absolutely for m,=m,=o

Next we shall turn to the proof of the latter half of the theorem.

Since, by supposition, there exists a rectifiable closed Jordan
curve C such that {A}u D, lies inside C and furthermore such that
221U D, lies outside C, we denote its length by !. Then, from the
fact that y.(2) is regular inside and on C, we can find that
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and in addition, even if m,=oo

| (N ey 99) |
a=t (a—1)

S Sup [ 60 | 33 Up | QL= N0 |1 B} 192 1 <.
T AEO a=1 A€0

On the other hand, since every (e {2?}UD, lies outside C and
since ,(2) has its singularities within C, we can find from the course
of the proof of Theorem 64 that

s on@a=SL | v fS |

1 UR(Oha, g)tda
(®}un, (1= C)" (KOs, 0 )}

mg

x11(8)
o:E:l gWUDz Wd(K 2(Ohsay g2)
— % U (Nehye, gs) (1=m,= o0)
= (a1

according to the regularity of y.(2) on the closed set {A*}uUD,, and
moreover the absolute convergency of the series on the right for
m,=o0 is shown in the same manner as above.

The required result (55) is furnished by the two equalities just
established. The theorem has thus been proved.

Remark. Let M;QQ)=|(AI—N,)™"|| for any fixed point
1¢ P9YuD;, (=1, 2); let {e,},-1s:.. be a complete orthonormal set
in ©; and let

21/"6 »€9  (1=1,2),

|,,_

where {£{/'},_1,,s,... is an infinite set of complex numbers such that
| | SG;<oo(v=1, 2,8, ---) for some positive constant G,. Then we
obtain

S G137 e = 5 aar{S L LY

=3 M T =G (e i —1) <o,

so that h;,(e®) can be so chosen as to satisfy the condition
2 AI=N)TH* [ hsa l| <oo for any 2¢{27}U D;.

Corollary 9. Let {2 =10.8,00 and {22} =1,2,80.- both be _@nded
infinite sets of complex numbers such that their closures {2} and
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{2%} have no point in common; let {a{)},-1,,s,... and {by ’},,_1,2 s... alSO
be bounded infinite sets of complex numbers such that E |l P< oo
(G=1,2;a=1,2,3, ---) and 2|b(")|2<oo and let

o

L= 35S (12m;se0, j=1,2)

e i I 2"’)"‘

where when m,—oo {a%}a,,2: are so chosen as to satisfy the condition
3

(56) St sup 240 {3 a2 [f <o (G=1,2)

for any 1¢ {2‘“} Then
HIANEDT | &y Ay
on  RRECRRT-RE X
(I=m;=00, j=1, 2),
where the two double series on the left both converge absolutely
even if m,=m,=o0
Proof. For each value of j=1, 2, let {¢/'},_.,... be a complete
orthonormal system in 9; let {e{'} c{el} (=1, 2); let N; be a bounded
normal operator in  for each value of j=1,2 such that its point
spectrum is given by {2},—..s,... and furthermore such that N,e4
=2eP(v=1,2,8,.+.); and let h,a_z ae? e and g; Zb‘”’e“’ €9
for j=1,2. If we denote by 4; the continuous spectrum of N; for
each value of j=1, 2, then there is no difficulty in showing that

ST~ N)“hye, 0)= ESW}U = g WEOhse, )

mg

ES{} g M Ohser 0)

=12  (1sm;=co,2¢ {17}, =1, 2),
and here it is obvious from the hypothesis (56) that, when m;=co,
a)by)
201 S35
inequality. Hence the result (55) of Theorem 66 is applicable to the
L) (1=1,2). In addition, we have

< (N ay 91) () -
2 = 2 Lyt O ) (=S

e x5(E)

=3 |y B A O 9
ml o x;a—l)(zil))a&)biy)

=2 o)

< oo for any 1¢ {27} according to the Cauchy

and similarly

S (U (Nohaay 92) _ <A 10QP)ai by
2 @enaEE (a-D) ==
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By virtue of (55) these two equalities just established together
imply the validity of the desired equality (57).

Next, let » be the distance between the two closed sets {27}
and {2%}; let C* be the circle with center at 2 and radius r/2;
and let M,= sup [%:(2)|. Since %;(2) is regular at any point 2 ¢ {22}, M,

v=1,2,3, ) are bounded and so there exists a positive constant
M such that M,gM v=1,2,3, --.). Asa result, Cauchy’s inequality
for the coefficients of the expansion of a regular function and the
application of the maximum modulus principle to ¥,(1) on the disc
{2:]2—=2" |=r/2} enable us to assert that

O < M <oyt (a=1,2,3, -
(a_l)! = (,,./2)0!—1 =} ( //r) (a b} ’ b )’

so that

é é lx(a 1)(2(1))G,(V)b§v) | <M2 (2/,,.)0:-1 ” hm H H s ” < oo

=] (a—1)|
by virtue of the hypothesis (66). Likewise we can verify the absolute
convergency of the other double series on the left of (57).

The corollary has thus been proved.

Corollary 10. Let x;(2) (=1, 2) be the functions defined in the
same manner as in Corollary 9, without using the foregoing
hypothesis {27} N{2A7}=@; let R;,) (j=1,2) be integral functions
(inclusive of constants), let U;)=R;Q)+%;Q) (=1, 2), that is, let

£ a® ) b V) .

UW=R0+3] 3] G (smses, =1,2)

where the coefficients a{;) and b}’ are subject to the conditions stated
in Corollary 9; and let I' be a rectifiable closed Jordan curve
containing {T‘“—}U{W inside itself. Then

R(a—l)(l(l))a;;)b(u) ) R;a—l)(zﬁﬁ))a;;)bév)

S UWUWi=3}3) et RS T
(1§_mj§00, j:'l’ 2)’

where the complex line integral on the left is extended counter-
clockwise around I; and moreover, the two double series on the
right both converge absolutely even if m,=m,=o0

Proof. By means of (54) and the same reasoning as that used

in the proof of Corollary 9, we can easily establish the present
corollary.

Theorem 67. For each value of j=1, 2, let U;(1) be the function
defined in Theorem 66; let o, be the least positive constant subject
to the condition that {A?}UD; be on the disc {1:|1|=0;}; let the
expansion of U,(2) on the exterior of this least disc be

Uj(%ew):%aéa’)_}_% gl (al)— 7/b(a))< ) += 2 (a(”—l—%b‘“)( )
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where 0<£<1, 0,<p<oo, and
ad =%SM U,(pe'*) cospt dt
0
b =%S U,(0e™*) sinpt dt;
0

let K\=(ay’)*+(by")*; and let I" be the positively oriented curve
defined in Theorem 66. Then K (p=1,2,3,--.) are constants

independent of p for j=1,2; and assuming that % denotes
%SrUj(l)Z”dlx (p—il)! when R{P+(0)=0, the equalities

69 30— LS RO R ASmseo)
and

59 53 ET W 09 1S4 (o R0 Ko (1, co)

a=1 (a—1)| Ri7*1(0)
hold for the respective ordmary parts R,(2) and R,2) of U,(2) and
U.(2).
Proof. Since it is apparent that the results of Theorem 65 are
also valid for U,2) (=1, 2),
S HOBDA = 3 0+ DRI S
and the series on the right is absolutely convergent. On the other
hand, we have
Ry (N)hia,
DR =3 ¢
| ror@a =3 et
as will be seen from the course of the proof of Theorem 66, These
equalities yield the required relation (58). In a similar manner, the
relation (59) can be established. Each of K* (p=1,2,3, ...) is of
course a constant independent of p provided that g;<p< (j=1, 2),
as we have already pointed out in Theorem 65,
With these results, the proof of the theorem is complete.

%) (1=m,so0),




