226. Remark on Eigenfunctions of the Operators $-\Delta + (qx)$

By Kazuo ASANO and Taira SHIROTA Department of Mathematics, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1966)

Introduction. It is stated in [1] that if the operator $L \equiv -\Delta + q(x)$, where Δ is 3-dimension Laplacian and q(x) is sufficiently differentiable real-valued function with compact support in 3-dimension Euclidean space R^3 , has no eigenvalue, then solution u(x) of equation $Lu = -\lambda^2 u$ where λ is a complex number satisfying $Re\lambda \ge 0$ equals to zero identically if u(x) is a twice continuously differentiable function and also $u(x) = O(|x|^{-1})$ as $|x| \to \infty$.

In §1 we give an example such that L has no eigenvalue, but that for $\lambda = 0$, $Lu = \lambda u$ has a solution, not zero identically which is not an eigenfunction, but $u(x) = O(|x|^{-1})$ as $|x| \to \infty$, where q(x) has a compact support and for any positive number ε

$$-q(x) \leq \left(\frac{1}{4} + \varepsilon\right) \frac{1}{|x|^2}$$

and also there exist some r_1, r_2 ($0 < r_1 < r_2 < \infty$) and for $r_1 \leq \mid x \mid \leq r_2$

$$-q(x) \not\leq \frac{1}{4} \frac{1}{|x|^2}.$$

From this example, we can construct a solution of wave equation such that $\frac{\partial^2 u}{\partial t^2} - \Delta u + qu = 0$ for t > 0, its initial data u(0, x) and $\frac{\partial u}{\partial t}(0, x)$ have compact supports resprectively, but that $\lim_{t\to\infty} u(t, x)$ does not vanish for any $x \in R^3$.

Our considerations of the method were suggested by those of the method used in [2]. Next we give its proof in §2, and consider the influence which $\frac{1}{4} \frac{1}{|x|^2}$ has on the spectrum of L in §3.

§1. We consider a differential operator $L \equiv -\Delta + q(x)$ defined on $R^{\mathfrak{s}}$, where q(x) is a twice continuously differentiable real-valued function and also $q(x) = O(|x|^{-2-h})$ (h>0) as $|x| \to \infty$. On this case L has a unique self-adjoint extension on $L^2(R^{\mathfrak{s}})$ and its domain is the set of all functions whose partial derivatives of order ≤ 2 in distribution sense belong to $L^2(R^{\mathfrak{s}})$. We also denote the extended operator by L. Furthermore we write |x| = r.

Example 1. We set

$$q(x) = \begin{cases} -k^2 & \text{for } 0 \leq r < r_1, \\ -\left(\frac{1}{4} + \varepsilon\right) \frac{1}{r^2} & \text{for } r_1 \leq r \leq r_2, \\ 0 & \text{for } r > r_2, \end{cases}$$
$$w(r) = \begin{cases} \sin kr & \text{for } 0 \leq r < r_1, \\ c_1 r^{\frac{1}{2}} \sin \left(\sqrt{\varepsilon} \log r\right) & \text{for } r_1 \leq r_2 \leq r, \\ c_2 & \text{for } r > r_2, \end{cases}$$

and

where
$$\varepsilon$$
 is an arbitrary positive number, and k, r_1, r_2, c_1, c_2 will be determined later such that $w(r)$ is positive on $(0, \infty)$ and continuously differentiable on $(0, \infty)$. Next we set

$$u(x) = r^{-1}w(r)$$

and also we write

$$\widetilde{u}(x) = u^* \varphi_{\delta}(x),$$

 $\widetilde{q}(x) = \frac{(qu)^* \varphi_{\delta}(x)}{u^* \varphi_{\delta}(x)},$

where

$$egin{aligned} &arphi_{\delta}(x)\!=\!\delta^{-3}arphi\!\left(rac{r}{\delta}
ight),\ &arphi(r)\!\in\!C^{\infty}([0,\,\infty)),\ &arphi(r)\!\geq\!0 \quad ext{for }r\in[0,\,\infty),\ &arphi(r)\!=\!0 \quad ext{for }r\geq\!1,\ &arphi(r)\!=\!1 \quad ext{for }n\leq\!1,\ &arphi(r)\!=\!1 \quad ext{for }0\leq\!r\leq\!rac{1}{2},\ &\int_{0}^{\infty}arphi(r)dx\!=\!1, \end{aligned}$$

and δ is a sufficiently small positive number. Then $u^*\varphi_{\delta}(x)\neq 0$, so $\widetilde{u}(x) \in C^{\infty}(R^3), \ \widetilde{q}(x) \in C^{\infty}(R^3) \text{ and } \widetilde{u} \text{ satisfies an equation } -\Delta \widetilde{u} + \widetilde{q}\widetilde{u} = 0,$ and also $r\widetilde{u} \rightarrow c_2$ as $r \rightarrow \infty$. But $c_2 > 0$, so $\widetilde{u}(x)$ does not belong to $L^{2}(R^{3}).$

Now we divide q(x) into $q(x) = q_+(x) - q_-(x), q_+(x) \ge 0, q_-(x) \ge 0$.

Here to explain our significance of Example 1, we give two lemmas.

Lemma 1. Let $q_{-}(x) \leq \frac{1}{4} \frac{1}{r^2}$. Then the solution u(x) of the equation Lu=0 equals to zero identically if for some $\varepsilon > 0$, $u = O(r^{-\frac{1}{2}-\varepsilon})$ and $\frac{\partial u}{\partial x_i} = O(r^{-\frac{3}{2}-\varepsilon})$, (i=1, 2, 3) as $r \to \infty$.

Lemma 2. Let q(x) be a function which satisfies the following properties:

- i) q(x) = q(r),
- ii) there exists a number $r_1(>0)$ such that q(r)=0 for $r \ge r_1$,
- iii) $q_{-} \leq (2+\frac{1}{4}) \frac{1}{r^2}$.

1045

for $r > r_2$,

Furthermore let Lu=0 have a solution u such that u=u(r)>0 on $(0, \infty)$, then the operator L has no eigenvalue.

§ 2. 1. The construction of w and of in Example 1. We at first choose r_2 such that $0 < r_2 < 1$ and $w'(r_2) = 0$, that is,

$$\tan(\sqrt{\varepsilon} \log r_2) = -2\sqrt{\varepsilon}$$
.

Next we choose k, r_1, c_1 such that

$$\begin{split} &k > 0, \\ &0 < r_1 < r_2, \\ &\sin k r_1 = c_1 r_1^{\frac{1}{2}} \sin \left(\sqrt{\varepsilon} \log r_1\right), \\ &k \cos k r_1 = c_1 r_1^{-\frac{1}{2}} \{\frac{1}{2} \sin \left(\sqrt{\varepsilon} \log r_1\right) + \sqrt{\varepsilon} \cos \left(\sqrt{\varepsilon} \log r_1\right)\}, \\ &k^2 \leq (\frac{1}{4} + \varepsilon) \frac{1}{r_1^2}, \end{split}$$

and $c_1 \sin(\sqrt{\varepsilon} \log r) > 0$ for $r \in [r_1, r_2]$. Furthermore we set

$$c_2 = c_1 r_2^{\frac{1}{2}} \sin(\sqrt{\epsilon} \log r_2) \quad (>0).$$

Then q(r) and w(r) described in §1 satisfy the relation w''(r) = q(r)w(r).

We now set

$$u(x)=r^{-1}w(r),$$

then u(x)>0 and $ru(x)\rightarrow c_2$ as $r\rightarrow\infty$. From the above relation we see that $-\varDelta u + qu = 0$, but that $u \notin L^2(R^3)$.

2. Proof of Lemma 1. It is well known that if $u(x) \in C^2(\mathbb{R}^3)$, and $u(x) = O(r^{-\frac{1}{2}-\epsilon})$, $\frac{\partial u}{\partial x_i} = O(r^{-\frac{3}{2}-\epsilon})$ $(i=1, 2, 3), \epsilon > 0$, as $r \to \infty$, we then have the following inequality:

$$\int_{\mathbb{R}^3} \frac{1}{4} \, \frac{|u(x)|^2}{r^2} dx \leq \int_{\mathbb{R}^3} |\operatorname{grad} u(x)|^2 dx.$$

Both sides are equal if and only if $u(x) \equiv 0$. Now we prove Lemma 1. If $u(x) \equiv 0$, then from the assumption

$$egin{aligned} 0 &= \int_{R^3} (-arDelta u + qu) \overline{u} dx \ &= \int_{R^3} (|\operatorname{grad} u|^2 + q \mid u \mid^2) dx \ &> \int_{R^3} & \left(rac{1}{4r^2} - q_-
ight) \mid u \mid^2 dx \geqq 0, \end{aligned}$$

which is a contradiction.

3. Proof of Lemma 2. Since for $\lambda > 0$, this lemma is proved in T. Kato [3], we may investigate this lemma when $\lambda \leq 0$. We replace the equation $-\Delta u + qu = \lambda u$ by polar coordinate (r, θ) , then this equation becomes

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{Au}{r^2} + (\lambda - q)u = 0,$$

[Vol. 42,

No. 9]

where A is Laplace-Beltrami operator. We now define $w(r, \theta) = ru(r, \theta)$, then $w(r, \theta)$ satisfies

$$rac{\partial^2 w}{\partial r^2} + rac{Aw}{r^2} + (\lambda - q)w = 0$$

By $\varphi_{n,m}(\theta)$ we denote normalized *n*-th spherical harmonics, then $w(r, \theta)$ is expanded such that

$$w(r,\theta) = \sum_{n=0}^{\infty} \sum_{m} \int_{|\theta|=1} w(r,\theta) \overline{\varphi_{n,m}(\theta)} d\theta \cdot \varphi_{n,m}(\theta),$$

and its coefficient $v_{n,m}(r) = \int_{|\theta|=1} w(r, \theta) \overline{\varphi_{n,m}(\theta)} d\theta$ satisfies the equation $v_{n,m}'(r) + \left(\lambda - q - \frac{n(n+1)}{r^2}\right) v_{n,m}(r) = 0.$

We at first show that $v_{n,m}(r) \equiv 0$ for $n \ge 1$. If $v_{n,m} \not\equiv 0$, from $u(x) \in L^2(R^3), \frac{\partial u}{\partial x_i} \in L^2(R^3), (i=1, 2, 3)$ $0 = -\int_0^\infty \left\{ v_{n,m}'' + \left(\lambda - q - \frac{n(n+1)}{r^2}\right) v_{n,m} \right\} \overline{v}_{n,m} dr$ $= \int_0^\infty \left\{ |v_{n,m}'|^2 + \left(q - \lambda + \frac{n(n+1)}{r^2}\right) |v_{n,m}|^2 \right\} dr$ $> \int_0^\infty \left\{ (\frac{1}{4} + 2) \frac{1}{r^2} - (\lambda + q_-) \right\} |v_{n,m}|^2 dr \ge 0.$

This is a contradiction.

Next we show that $v_0(r) \equiv 0$. From the preceding fact $v_0'' = (\mu + q)v_0$ (1) where we write $\lambda = -\mu$ ($\mu \ge 0$).

When $\mu = 0$, from (1) we get

 $\theta(\mu$

$$v_0(r) \!=\! v(0, r) \!=\! ar \!+\! b \qquad ext{for} \ r \!\geq\! r_1.$$

From this and $v(0, r) \in L^2(R^1)$, we see that

v(0, r) = 0 for $r \ge r_1$,

and accordingly that $v(0, r) \equiv 0$.

Now denoting the solution v_0 of the equation $v''_0 = (q + \mu)v_0$ by $v(\mu, r)$, we set

$$\begin{array}{c} v(\mu, r) = \rho(\mu, r) \sin \theta(\mu, r), \\ v'(\mu, r) = \rho(\mu, r) \cos \theta(\mu, r), \\ \rho(\mu, r) = \{v(\mu, r)^2 + v'(\mu, r)^2\}^{\frac{1}{2}}, \end{array} \right\}$$
(2)

and

$$, 0) = 0.$$
 (3)

From (1) and (2), we get

$$\rho'(\mu, r) = (1 + (\mu + q))\rho(\mu, r)\sin\theta(\mu, r)\cos\theta(\mu, r), \qquad (4)$$

$$heta'(\mu, r) = \cos^2 heta(\mu, r) - (\mu + q) \sin^2 heta(\mu, r)$$
 (5)

for all $r \ge 0$.

Solving (1) for

$$r \ge r_1$$
, we get
 $v(\mu, r) = ae^{\sqrt{\mu}r} + be^{-\sqrt{\mu}r}$. (6)

1047

[Vol. 42,

Because of $u \in L^{2}(\mathbb{R}^{3})$, a=0. Therefore $v(\mu, r) = be^{-\sqrt{\mu}r}$ for $r \ge r_{1}$. Assuming $b \ne 0$ for some $\mu > 0$, from (2), (4), (6), we get

$$\sin 2 heta(\mu, r) = -rac{2 \sqrt{\mu}}{1+\mu} \qquad ext{for} \ r \geq r_{ ext{i}}.$$

Accordingly for some integer k

$$P(\mu, r) \in ((k+\frac{1}{2})\pi, (k+1)\pi),$$
 (7)

and for $r \ge r_1$, $\theta(\mu, r)$ is constant. Hence from (5)

$$u = \cot^2(\mu, r), \quad \text{for } r \ge r_1.$$
 (8)

Here we remark from (5), (8) that even if there exists an eigenfunction whose $\theta(\mu, r)$ is in $((k+\frac{1}{2})\pi, (k+1)\pi)$ for $r \ge r_1$, it is determined by a unique μ .

Now we assume that there exists a positive solution v(0, r). Setting v(0, r) = ar + b for $r \ge r_1$, we see that $\frac{1}{2} \sin 2\theta(0, r) = \frac{\rho'}{\rho} \rightarrow 0$ as $r \rightarrow \infty$, hence that $\theta(0, r) \rightarrow \frac{k\pi}{2}$ as $r \rightarrow \infty$. Furthermore it implies from the positiveness of v(0, r) that $\sin \theta(0, r) \ne 0$, that is,

$$0 \leq \theta(0, r) \leq \pi$$
. Moreover from (5), we see that
 $0 \leq \theta(0, r) \leq \frac{\pi}{2}$ for $r \in (r_1, \infty)$. (9)

$$\mu > 0$$
, from (3), (5), and (9)
 $0 \le \theta(\mu, r) \le \theta(0, r)$ for all $r > 0$

 $0 \leq \theta(\mu, r) \leq \theta(0, r)$ for all r > 0. that is, for $r > 0, \mu > 0, \theta(\mu, r) \in \left[0, \frac{\pi}{2}\right]$, which is a contradiction with (7).

Finally we remark that if $\theta(0, r)$ tends to $(k+\frac{1}{2})\pi$, as $r \to \infty$, then from (8) the operator L has just k-eigenvalues with simple multiplicity.

§ 3. Remark. For the dimension n=3, there exists at least one operator L which has eigenvalues even if q satisfies $q_{-} \leq (\frac{1}{4} + \varepsilon) \frac{1}{m^2}$, where ε is an arbitrary positive number.

Example 2. We set $q(r) = \begin{cases} -k^2 - \lambda & \text{for } 0 \leq r < r_1, \\ -(\frac{1}{4} + \delta) \frac{1}{r^2} - \lambda & \text{for } r_1 \leq r \leq r_2, \\ 0 & \text{for } r > r_2, \end{cases}$

and

If

$$w(r) = \begin{cases} \sin kr & \text{for } 0 \leq r < r_1, \\ r^{\frac{1}{2}} \sin \left(\sqrt{\delta} \log r\right) & \text{for } r_1 \leq r \leq r_2, \\ e^{-\sqrt{\lambda}r} & \text{for } r > r_2, \end{cases}$$

where δ is a fixed number such that $0 < \delta \leq \frac{\varepsilon}{2}$, and we choose k, r_1

such that

$$\begin{aligned} k > 0, \\ r_1 > 0, \\ \sin k r_1 = r_1^{\frac{1}{2}} \sin \left(\sqrt{\delta} \log r_1 \right), \\ k \cot k r_1 = \frac{1}{r_1} \left\{ \sqrt{\delta} \left(\cot \sqrt{\delta} \log r_1 \right) + \frac{1}{2} \right\}, \end{aligned}$$

in addition k^2 is sufficiently smaller than $(\frac{1}{4}+\varepsilon)\frac{1}{r_1^2}$. Next we choose

 λ , r_2 such that

$$egin{aligned} &r_1 < r_2, \ &0 < \lambda \leq rac{arepsilon}{2r_2^2}, \ &r_2^{rac{1}{2}} \sin\left(\sqrt{-\delta} \log r_2
ight) = e^{-\sqrt{\lambda} r_2}, \ &rac{1}{r_2} \{\sqrt{-\delta} \, \cot\left(\sqrt{-\delta} \, \log r_2
ight) + rac{1}{2} \} = -\sqrt{-\lambda} \,. \end{aligned}$$

and

Then q(r) and w(r) mentioned above, satisfy the relation $w''(r) = (q+\lambda)w(r).$ We next set $u(x) = r^{-1}w(r)$, then

 $Lu = \lambda u$, and also $u \in L^2(R^3)$.

References

- O. A. Ladyzhenskaja: On the principle of limit amplitude. Uspehi Mat. Nauk, 12, 161-164 (1957).
- [2] C. Zemach and F. Odeh: Uniqueness of radiative solutions to the Schroedinger wave equation. Arch. for Rat. Mech. and Anal., 226-237 (1960).
- [3] T. Kato: Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. on Pure Appl. Math., 12, 403-425 (1959).