226. Remark on Eigenfunctions of the Operators $-\Delta+(q x)$

By Kazuo Asano and Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugi, m.J.A., Nov. 12, 1966)

Introduction. It is stated in [1] that if the operator $L \equiv-\Delta+q(x)$, where Δ is 3 -dimension Laplacian and $q(x)$ is sufficiently differentiable real-valued function with compact support in 3-dimension Euclidean space R^{3}, has no eigenvalue, then solution $u(x)$ of equation $L u=-\lambda^{2} u$ where λ is a complex number satisfying $R e \lambda \geqq 0$ equals to zero identically if $u(x)$ is a twice continuously differentiable function and also $u(x)=O\left(|x|^{-1}\right)$ as $|x| \rightarrow \infty$.

In $\S 1$ we give an example such that L has no eigenvalue, but that for $\lambda=0, L u=\lambda u$ has a solution, not zero identically which is not an eigenfunction, but $u(x)=O\left(|x|^{-1}\right)$ as $|x| \rightarrow \infty$, where $q(x)$ has a compact support and for any positive number ε

$$
-q(x) \leqq\left(\frac{1}{4}+\varepsilon\right) \frac{1}{|x|^{2}}
$$

and also there exist some $r_{1}, r_{2}\left(0<r_{1}<r_{2}<\infty\right)$ and for $r_{1} \leqq|x| \leqq r_{2}$

$$
-q(x) \not \equiv \frac{1}{4} \frac{1}{|x|^{2}} .
$$

From this example, we can construct a solution of wave equation such that $\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+q u=0$ for $t>0$, its initial data $u(0, x)$ and $\frac{\partial u}{\partial t}(0, x)$ have compact supports resprectively, but that $\lim _{t \rightarrow \infty} u(t, x)$ does not vanish for any $x \in R^{3}$.

Our considerations of the method were suggested by those of the method used in [2]. Next we give its proof in § 2, and consider the influence which $\frac{1}{4} \frac{1}{|x|^{2}}$ has on the spectrum of L in $\S 3$.
§1. We consider a differential operator $L \equiv-\Delta+q(x)$ defined on R^{3}, where $q(x)$ is a twice continuously differentiable real-valued function and also $q(x)=O\left(|x|^{-2-h}\right)(h>0)$ as $|x| \rightarrow \infty$. On this case L has a unique self-adjoint extension on $L^{2}\left(R^{3}\right)$ and its domain is the set of all functions whose partial derivatives of order $\leqq 2$ in distribution sense belong to $L^{2}\left(R^{3}\right)$. We also denote the extended operator by L. Furthermore we write $|x|=r$.

Example 1. We set

$$
q(x)= \begin{cases}-k^{2} & \text { for } 0 \leqq r<r_{1} \\ -\left(\frac{1}{4}+\varepsilon\right) \frac{1}{r^{2}} & \text { for } r_{1} \leqq r \leqq r_{2} \\ 0 & \text { for } r>r_{2}\end{cases}
$$

and

$$
w(r)= \begin{cases}\sin k r & \text { for } 0 \leqq r<r_{1}, \\ c_{1} r^{\frac{1}{2}} \sin (\sqrt{\varepsilon} \log r) & \text { for } r_{1} \leqq r_{2} \leqq r, \\ c_{2} & \text { for } r>r_{2},\end{cases}
$$

where ε is an arbitrary positive number, and $k, r_{1}, r_{2}, c_{1}, c_{2}$ will be determined later such that $w(r)$ is positive on $(0, \infty)$ and continuously differentiable on $(0, \infty)$. Next we set

$$
u(x)=r^{-1} w(r)
$$

and also we write

$$
\begin{aligned}
& \widetilde{u}(x)=u^{*} \varphi_{\delta}(x), \\
& \widetilde{q}(x)=\frac{(q u)^{*} \varphi_{\delta}(x)}{u^{*} \varphi_{\delta}(x)},
\end{aligned}
$$

where

$$
\begin{aligned}
& \varphi_{\delta}(x)=\delta^{-3} \varphi\left(\frac{r}{\delta}\right), \\
& \varphi(r) \in C^{\infty}([0, \infty)), \\
& \varphi(r) \geqq 0 \text { for } r \in[0, \infty), \\
& \varphi(r)=0 \text { for } r \geqq 1, \\
& \varphi(r)=1 \text { for } 0 \leqq r \leqq \frac{1}{2}, \\
& \int_{0}^{\infty} \varphi(r) d x=1,
\end{aligned}
$$

and δ is a sufficiently small positive number. Then $u^{*} \varphi_{\delta}(x) \neq 0$, so $\widetilde{u}(x) \in C^{\infty}\left(R^{3}\right), \widetilde{q}(x) \in C^{\infty}\left(R^{3}\right)$ and \tilde{u} satisfies an equation $-\Delta \tilde{u}+\widetilde{q} \tilde{u}=0$, and also $r \tilde{u} \rightarrow c_{2}$ as $r \rightarrow \infty$. But $c_{2}>0$, so $\tilde{u}(x)$ does not belong to $L^{2}\left(R^{3}\right)$.

Now we divide $q(x)$ into $q(x)=q_{+}(x)-q_{-}(x), q_{+}(x) \geqq 0, q_{-}(x) \geqq 0$.
Here to explain our significance of Example 1, we give two lemmas.

Lemma 1. Let $q_{-}(x) \leqq \frac{1}{4} \frac{1}{r^{2}}$. Then the solution $u(x)$ of the equation $L u=0$ equals to zero identically if for some $\varepsilon>0, u=O\left(r^{-\frac{1}{2}-\varepsilon}\right)$ and $\frac{\partial u}{\partial x_{i}}=O\left(r^{-\frac{3}{2}-\varepsilon}\right),(i=1,2,3)$ as $r \rightarrow \infty$.

Lemma 2. Let $q(x)$ be a function which satisfies the following properties:
i) $q(x)=q(r)$,
ii) there exists a number $r_{1}(>0)$ such that $q(r)=0$ for $r \geqq r_{1}$,
iii) $\quad q_{-} \leqq\left(2+\frac{1}{4}\right) \frac{1}{r^{2}}$.

Furthermore let Lu=0 have a solution u such that $u=u(r)>0$ on $(0, \infty)$, then the operator L has no eigenvalue.
§ 2. 1. The construction of w and of in Example 1. We at first choose r_{2} such that $0<r_{2}<1$ and $w^{\prime}\left(r_{2}\right)=0$, that is,

$$
\tan \left(\sqrt{\varepsilon} \log r_{2}\right)=-2 \sqrt{\varepsilon}
$$

Next we choose k, r_{1}, c_{1} such that

$$
\begin{aligned}
& k>0, \\
& 0<r_{1}<r_{2}, \\
& \sin k r_{1}=c_{1} r_{1}^{\frac{3}{2}} \sin \left(\sqrt{\varepsilon} \log r_{1}\right), \\
& k \cos k r_{1}=c_{1} r_{1}^{-\frac{1}{2}}\left\{\frac{1}{2} \sin \left(\sqrt{\varepsilon} \log r_{1}\right)+\sqrt{\varepsilon} \cos \left(\sqrt{\varepsilon} \log r_{1}\right)\right\}, \\
& k^{2} \leqq\left(\frac{1}{4}+\varepsilon\right) \frac{1}{r_{1}^{2}},
\end{aligned}
$$

and $c_{1} \sin (\sqrt{\varepsilon} \log r)>0$ for $r \in\left[r_{1}, r_{2}\right]$.
Furthermore we set

$$
c_{2}=c_{1} r_{2}^{\frac{1}{2}} \sin \left(\sqrt{\varepsilon} \log r_{2}\right) \quad(>0)
$$

Then $q(r)$ and $w(r)$ described in $\S 1$ satisfy the relation

$$
w^{\prime \prime}(r)=q(r) w(r)
$$

We now set

$$
u(x)=r^{-1} w(r)
$$

then $u(x)>0$ and $r u(x) \rightarrow c_{2}$ as $r \rightarrow \infty$. From the above relation we see that $-\Delta u+q u=0$, but that $u \notin L^{2}\left(R^{3}\right)$.
2. Proof of Lemma 1. It is well known that if $u(x) \in C^{2}\left(R^{3}\right)$, and $u(x)=O\left(r^{-\frac{1}{2}-\varepsilon}\right), \frac{\partial u}{\partial x_{i}}=O\left(r^{-\frac{3}{2}-\varepsilon}\right)(i=1,2,3), \varepsilon>0$, as $r \rightarrow \infty$, we then have the following inequality:

$$
\int_{R^{3}} \frac{1}{4} \frac{|u(x)|^{2}}{r^{2}} d x \leqq \int_{R^{3}}|\operatorname{grad} u(x)|^{2} d x
$$

Both sides are equal if and only if $u(x) \equiv 0$. Now we prove Lemma 1. If $u(x) \not \equiv 0$, then from the assumption

$$
\begin{aligned}
0 & =\int_{R^{3}}(-\Delta u+q u) \bar{u} d x \\
& =\int_{R^{3}}\left(|\operatorname{grad} u|^{2}+q|u|^{2}\right) d x \\
& >\int_{R^{3}}\left(\frac{1}{4 r^{2}}-q_{-}\right)|u|^{2} d x \geqq 0,
\end{aligned}
$$

which is a contradiction.
3. Proof of Lemma 2. Since for $\lambda>0$, this lemma is proved in T. Kato [3], we may investigate this lemma when $\lambda \leqq 0$. We replace the equation $-\Delta u+q u=\lambda u$ by polar coordinate (r, θ), then this equation becomes

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{A u}{r^{2}}+(\lambda-q) u=0,
$$

where A is Laplace-Beltrami operator. We now define $w(r, \theta)$ $=r u(r, \theta)$, then $w(r, \theta)$ satisfies

$$
\frac{\partial^{2} w}{\partial r^{2}}+\frac{A w}{r^{2}}+(\lambda-q) w=0 .
$$

By $\varphi_{n, m}(\theta)$ we denote normalized n-th spherical harmonics, then $w(r, \theta)$ is expanded such that

$$
w(r, \theta)=\sum_{n=0}^{\infty} \sum_{m} \int_{|\theta|=1} w(r, \theta) \overline{\varphi_{n, m}(\theta)} d \theta \cdot \varphi_{n, m}(\theta)
$$

and its coefficient $v_{n, m}(r)=\int_{|\theta|=1} w(r, \theta) \overline{\varphi_{n, m}(\theta)} d \theta$ satisfies the equation

$$
v_{n, m}^{\prime \prime}(r)+\left(\lambda-q-\frac{n(n+1)}{r^{2}}\right) v_{n, m}(r)=0 .
$$

We at first show that $v_{n, m}(r) \equiv 0$ for $n \geqq 1$. If $v_{n, m} \not \equiv 0$, from $u(x) \in L^{2}\left(R^{3}\right), \frac{\partial u}{\partial x_{i}} \in L^{2}\left(R^{3}\right),(i=1,2,3)$

$$
\begin{aligned}
0 & =-\int_{0}^{\infty}\left\{v_{n, m}^{\prime \prime}+\left(\lambda-q-\frac{n(n+1)}{r^{2}}\right) v_{n, m}\right\} \bar{v}_{n, m} d r \\
& =\int_{0}^{\infty}\left\{\left|v_{n, m}^{\prime}\right|^{2}+\left(q-\lambda+\frac{n(n+1)}{r^{2}}\right)\left|v_{n, m}\right|^{2}\right\} d r \\
& >\int_{0}^{\infty}\left\{\left(\frac{1}{4}+2\right) \frac{1}{r^{2}}-\left(\lambda+q_{-}\right)\right\}\left|v_{n, m}\right|^{2} d r \geqq 0 .
\end{aligned}
$$

This is a contradiction.
Next we show that $v_{0}(r) \equiv 0$. From the preceding fact

$$
\begin{equation*}
v_{0}^{\prime \prime}=(\mu+q) v_{0} \tag{1}
\end{equation*}
$$

where we write $\lambda=-\mu(\mu \geqq 0)$.
When $\mu=0$, from (1) we get

$$
v_{0}(r)=v(0, r)=a r+b \quad \text { for } r \geqq r_{1} .
$$

From this and $v(0, r) \in L^{2}\left(R^{1}\right)$, we see that

$$
v(0, r)=0 \quad \text { for } r \geqq r_{1}
$$

and accordingly that $v(0, r) \equiv 0$.
Now denoting the solution v_{0} of the equation $v_{0}^{\prime \prime}=(q+\mu) v_{0}$ by $v(\mu, r)$, we set

$$
\left.\begin{array}{rl}
v(\mu, r) & =\rho(\mu, r) \sin \theta(\mu, r), \tag{2}\\
v^{\prime}(\mu, r) & =\rho(\mu, r) \cos \theta(\mu, r), \\
\rho(\mu, r) & =\left\{v(\mu, r)^{2}+v^{\prime}(\mu, r)^{2}\right\}^{\frac{1}{2}}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\theta(\mu, 0)=0 . \tag{3}
\end{equation*}
$$

From (1) and (2), we get

$$
\begin{align*}
& \rho^{\prime}(\mu, r)=(1+(\mu+q)) \rho(\mu, r) \sin \theta(\mu, r) \cos \theta(\mu, r), \tag{4}\\
& \theta^{\prime}(\mu, r)=\cos ^{2} \theta(\mu, r)-(\mu+q) \sin ^{2} \theta(\mu, r) \tag{5}
\end{align*}
$$

for all $r \geqq 0$.
Solving (1) for $r \geqq r_{1}$, we get

$$
\begin{equation*}
v(\mu, r)=a e^{\sqrt{\bar{\mu}} r}+b e^{-\sqrt{\bar{\mu}} r} . \tag{6}
\end{equation*}
$$

Because of $u \in L^{2}\left(R^{s}\right), a=0$. Therefore $v(\mu, r)=b e^{-\sqrt{\mu} r}$ for $r \geqq r_{1}$. Assuming $b \neq 0$ for some $\mu>0$, from (2), (4), (6), we get

$$
\sin 2 \theta(\mu, r)=-\frac{2 \sqrt{\mu}}{1+\mu} \quad \text { for } r \geqq r_{1} .
$$

Accordingly for some integer k

$$
\begin{equation*}
\theta(\mu, r) \in\left(\left(k+\frac{1}{2}\right) \pi,(k+1) \pi\right), \tag{7}
\end{equation*}
$$

and for $r \geqq r_{1}, \theta(\mu, r)$ is constant. Hence from (5)

$$
\begin{equation*}
\mu=\cot ^{2}(\mu, r), \quad \text { for } r \geqq r_{1} . \tag{8}
\end{equation*}
$$

Here we remark from (5), (8) that even if there exists an eigenfunction whose $\theta(\mu, r)$ is in $\left(\left(k+\frac{1}{2}\right) \pi,(k+1) \pi\right)$ for $r \geqq r_{1}$, it is determined by a unique μ.

Now we assume that there exists a positive solution $v(0, r)$. Setting $v(0, r)=a r+b$ for $r \geqq r_{1}$, we see that $\frac{1}{2} \sin 2 \theta(0, r)=\frac{\rho^{\prime}}{\rho} \rightarrow 0$ as $r \rightarrow \infty$, hence that $\theta(0, r) \rightarrow \frac{k \pi}{2}$ as $r \rightarrow \infty$. Furthermore it implies from the positiveness of $v(0, r)$ that $\sin \theta(0, r) \neq 0$, that is, $0 \varsubsetneqq \theta(0, r) \nsupseteq \pi$. Moreover from (5), we see that

$$
\begin{equation*}
0 \leqq \theta(0, r) \leqq \frac{\pi}{2} \quad \text { for } r \in\left(r_{1}, \infty\right) . \tag{9}
\end{equation*}
$$

If $\mu>0$, from (3), (5), and (9)

$$
0 \leqq \theta(\mu, r) \leqq \theta(0, r) \quad \text { for all } r>0
$$

that is, for $r>0, \mu>0, \theta(\mu, r) \in\left[0, \frac{\pi}{2}\right]$, which is a contradiction with (7).

Finally we remark that if $\theta(0, r)$ tends to $\left(k+\frac{1}{2}\right) \pi$, as $r \rightarrow \infty$, then from (8) the operator L has just k-eigenvalues with simple multiplicity.
§3. Remark. For the dimension $n=3$, there exists at least one operator L which has eigenvalues even if q satisfies $q_{-} \leqq(4+\varepsilon) \frac{1}{r^{2}}$, where ε is an arbitrary positive number.

Example 2. We set

$$
q(r)= \begin{cases}-k^{2}-\lambda & \text { for } 0 \leqq r<r_{1} \\ -\left(\frac{1}{1}+\delta\right) \frac{1}{r^{2}}-\lambda & \text { for } r_{1} \leqq r \leqq r_{2}, \\ 0 & \text { for } r>r_{2},\end{cases}
$$

and

$$
w(r)= \begin{cases}\sin k r & \text { for } 0 \leqq r<r_{1}, \\ r^{\frac{1}{2}} \sin (\sqrt{\delta} \log r) & \text { for } r_{1} \leqq r \leqq r_{2}, \\ e^{-\sqrt{\lambda} r} & \text { for } r>r_{2},\end{cases}
$$

where δ is a fixed number such that $0<\delta \leqq \frac{\varepsilon}{2}$, and we choose k, r_{1}
such that

$$
\begin{aligned}
& k>0, \\
& r_{1}>0, \\
& \sin k r_{1}=r_{1}^{\frac{1}{2}} \sin \left(\sqrt{\delta} \log r_{1}\right), \\
& k \cot k r_{1}=\frac{1}{r_{1}}\left\{\sqrt{\delta}\left(\cot \sqrt{\delta} \log r_{1}\right)+\frac{1}{2}\right\},
\end{aligned}
$$

in addition k^{2} is sufficiently smaller than $\left(\frac{1}{4}+\varepsilon\right) \frac{1}{r_{1}^{2}}$. Next we choose λ, r_{2} such that

$$
\begin{aligned}
& r_{1}<r_{2}, \\
& 0<\lambda \leqq \frac{\varepsilon}{2 r_{2}^{2}}, \\
& r_{2}^{\frac{1}{2}} \sin \left(\sqrt{\delta} \log r_{2}\right)=e^{-\sqrt{\lambda r_{2}}}, \\
& \frac{1}{r_{2}}\left\{\sqrt{\delta} \cot \left(\sqrt{\delta} \log r_{2}\right)+\frac{1}{2}\right\}=-\sqrt{\lambda} .
\end{aligned}
$$

and
Then $q(r)$ and $w(r)$ mentioned above, satisfy the relation $w^{\prime \prime}(r)=(q+\lambda) w(r)$.
We next set $u(x)=r^{-1} w(r)$, then

$$
L u=\lambda u, \quad \text { and also } \quad u \in L^{2}\left(R^{3}\right) .
$$

References

[1] O. A. Ladyzhenskaja: On the principle of limit amplitude. Uspehi Mat. Nauk, 12, 161-164 (1957).
[2] C. Zemach and F. Odeh: Uniqueness of radiative solutions to the Schroedinger wave equation. Arch. for Rat. Mech. and Anal., 226-237 (1960).
[3] T. Kato: Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. on Pure Appl. Math., 12, 403-425 (1959).

