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(Comm. by Kinjir6 KUNUGI, M.J.A., Dec. 12, 1966)

In this paper, by applying the functional-representations of normal
operators in Hilbert spaces to Somewhat abstracted and generalized
integral equations, we shall illustrate that the expansions of solutions
of such integral equations can be discussed by using integral operators
alone even if we do not give any analytic condition from which the
expansions of their corresponding kernels can be deduced.

Definitions of notations. Let A be a Lebesgue a-measurable set
of finite or infinite measure in real m-dimensional Euclidean space
R; let L(/, a) be the Lebesgue functionspace; let {F,(x)},=,, and
{(x)}=,, be both incomplete orthonormal systems such that the
union of them forms a complete orthonormal system in L.(2, a); let

(/.) be an infinite bounded normal matrix with I/. :/:I/,I0
(i- i, 2, 3, ...); let ())-(/) (p- i, 2, 3, n) where ,-u/()-/u
(i, 3"-1, 2, 3,...); let {2,}=,, be any infinite bounded sequence of
complex scalars; and for any positive integer p with l<=p<=n and
h(x) L.(z/, a) let N be an integral operator defined by

N,h(x) , , h(y),(y)da(y) (x)
=i

()/ c" h(y)(y)da(y)./r(x
/=i A =1

where c is an arbitrarily given complex constant.
Theorem 68. Let g(x) be an arbitrarily given function in the

subspace determined by {(x)},=,, and let (p-l, 2, 3, ..., n)
be the roots of the equation + a--O with complex coecients
a. Then the integral equation

p--i p----i

has a uniquely de$ermined solution

A()- c I (;-;)-’() e (for almos every e ),
=I p=l

where e- (x)(x)d(x) (-1, 2, 8, ...) ad , e < co; ad i
A =1

addition, if the set {} is everywhere dense on an open or a closed
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rectifiable Jordan curve F, ) denotes any very small neighborhood
of an arbitrarily given point on one, F, of the curves F as
the closed sets {,}=,, (p-1,2,3, ...,n), denotes )-

of all e,(x) e {,(x)}, then the function T(2)- fl(x)h(x)da(x) O
assumes in 2 every finite value, with the possible exception of at
most two finite values, an infinite number of times.

Proof. As is found immediately from the earlier discussions
N is a bounded normal operator in the concrete Hilbert space L(2, a)
and N (p-2, 3, ..., n)are identical with the iterated (bounded)
normal operators N respectively. Hence the given integral equation
(A) is rewritten in the form

I+ a2- f(x)-g(x) 2 e {2}=,,
where I denotes the identity operator. 0n the other hand, it is seen
from the hypothesis on that

p=l =i

and moreover it is clear that {2} is the point spectrum of N and
that () is an eienfunction of N correspondin to 2. If we now
denote by {K(z)} the complex spectral family of N and by fx(x)the
solution of (A), then these results permit us to conclude that

e (a-,2)-() (for almost every A),
=1 =1

where e- ()f()g() (-1, 2, a, ...) and
=I A

<. Here fx(x) belongs to because of

where M=su H i- ,i -.
=1

Next we consider the ease where {2} is everywhere dense on the
bounded oen curve F defined in the statement of the present theorem.
We may and do assume without loss of generality that the oint
F defined before is not either of the two extremities

the curve F. Let M be the middle oint of the segment A on

F and M the middle point of the segment M on F. Re,eating
this roeedure, we have an infinite sequence

1, 2, , ...) A tending to ; and similarly we can construct another

infinite seqaenee of oints M; (-1, 2, , ...) B tending to . Now
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we denote by q the least positive integer of in 5 belonging to

{,}_ M.,_M. where 3" is an arbitrary positive integer. Setting
(o-1, 2, 3, and Mo-A, we have an infinite sequence of q (o)

1, 2, 3, ...) e A tending to . In a similar way, we can construct

another infinite sequence of points, (w=l, 2, 3,...)e B tending
to . If we here put

’--I
flJ](x) . c. (. .2,)-1(x) +. cq.. 1-[ (.

:i p:l o=I p:l

o:1 p--1

and then consider the function

f(x)h(x)da(x) 0
J

h(x) , b?(x) e !Y, b :/: 0 ( 1, 2, 3,
Y"-I

every point belonging to the set

is a pole in the sense of the classical function theory; and for
defined in the statement of the theorem we have

/ )T(2)- T(2) l-I(fx-f, h) 2 U {52,},=,.,
p--1

where M is the same notation as before and the right-hand series
converges to zero as j becomes infinite, because of the fact that

". [cb [<: g(x) [:da(x) h(x) [:da(x) 1/2< o.
--i A A

This result shows that in the entire complex -plane T() is the
limit function of T.(); and any T.() has as an accumulation point
of polesin the sense of the classical function theory. In consequence,
by reasoning exactly like that used to prove Theorem 41 [2 we can
establish the latter half of the present theorem.

Similarly we can attain to the same conclusion for the case where
F is closed.

Remark 1. If -L.- 2 =/: R (m+1) and R =/: 0, and if

L. is not an accumulation point of U {,}--,., then a necessary
p----1

and sufficient condition that

(B) (2,)f(x) . a()-Nf(x) g(x) (g(x) e !YJ%)
p---’l
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be solvable is that the equalities g(x)9(x)da(x)-O (j-1, 2, 3, m)
J

hold. Let now this condition be fulfilled. Then the general solution
of (B) is given (in the sense of convergence in mean) by, c I (-2)-(x)+,d(x)

=m+l p=l 3"=1

where the d’s are arbitrary finite complex scalars, as will be verified
from the facts that N(x) (x) (j 1,2, 3,..., m) and +,a-"-0.

Theorem 69. Let N (p=1,2, 3, ..., n), {,(x)}, {,L}, , and
g(x) be the same notations as before; let

I . :/: (p>=m+ 1)

+=+ ,, (m+l);
and let , ,..., be not accumulation points of {,},> and
be the roots of the characteristic equation p" + ap"-+ap-+
+a-O for the given integral equation
(D) (N+aN_+aN_+ + aI)f(x) g(x) e .

Then the validity of the chain of equalities ag(x)9(x)da(x)-O
(j=l, 2, 3,..., m) is a necessary and sucient condition for the
existence of solutions of (D); and furthermore, if this condition is
fulfilled, the general solution of (D) is given (in the sense of
convergence in mean) by

(E) f(x) c ( )-e(x)+ d(x) (c g(x)e(x)da(x))
v=mn+l =1 "=

where the d’s are arbitrary complex scalars.
Proof. Since, by hypotheses, (D) is rewritten

[I (Nl-2I)f(x)- g(x)
=1

and N-2I (p-l, 2, 3, ..., n) have no inverses respectively, it is

obvious that the validity of the chain of equalities g(x)gj(x)da(x)-O
(3"-1, 2, 3,..., m) is necessary for the existence of a solution of
(D). We now suppose that this condition is fulfilled. Then g(x)e

is expressed in the form g(x)- c(x) where c- g(x)(x)da(x),

and hence a solution f(x) of (D) is given by

f(x)- (z-2,)-’dK(z)g(x)
{A}mn+l p=l

In addition, there is no difficulty in showing that the equality
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II E
p--1 =1

holds almost everywhere on A for any finite complex constants d
(j-.1, 2, 3,..., m) and that, for any function k(x) belonging to the
subspace determined by the orthonormal set {(x)} defined at the
beginning of this paper, (N, +aN_+aN_+ aI)k(x) also
belongs to . Consequently the general solution of (D) is given by
(E) for almost every x e 2.

With these results, the proof of the theorem is complete.
By reasoning like that used above, we can easily establish the

two following theorems:
Theorem 70. Suppose that, as before, the isolated points

2e{2} (p-1,2, 3, ...,s; sn) satisfying (C) are roots of the
characteristic equation for (D) and that {2} (p=s+ 1, s+ 2, ..., n)
are the other roots of the same equation. Then a necessary and
sucient condition that (D) be solvable is that the equalities

g(x)(x)da(x)-

0 (j- 1, 2, 3, m) hold; and if this condition

is fulfilled, the general solution of (D) is given (in the sense of
convergence in mean)by

f(x) + e
Y=ms+l p=l p=s+l 1

(c,- g(x)(x)da(x)),

where the d’s are arbitrary complex scalars.
Theorem 71. Let any root of the characteristic equation for

(D) be not a point of {. Then (D) has a uniquely determined
solution

f(x)-E c, (- ,)-9"(x) e (c- g(x)9(x)da(x))
=1 p=l

in the sense of convergence in mean.
Remark 2. If the characteristic equation of (D) has at least one

root such that it is an accumulation point of {I}, clearly (D)has no
solution as far as g(x)e contains all (x) except a finite number
of elements belonging to {9(x)}.

Theorem 72. Let one, , of the roots (p=l, 2, 3,..., n) of
the characteristic equation for (D) be an accumulation point of
{,}; let the others (p=2, 3,..., n) be not on the closure {}; let
{}=,, be all those elements of {} which lie on the disc
{1: 2-e} for an arbitrarily given small positive e; and let
g(x) in (D) be given by

g(x)-c9(x)-c,9(x)c9(x) (c- g(x)9,(x)ga(x)).
=1 =1 =1

Then if does not belong to {} itself, (D) has a uniquvly determined



No. 10 Some Applications of Functional-Representations. XXV 1133

solution

(F) f(x) =1c(-) ( e (for almost every x e 2);

but if, contrary to it, 1 is belonging to {2,} itself, (D) has (in
the sense of convergence in mean) the general solution

(G) f(x)-c,= (2-) ( )-d(x) e

where F(x), +(x), +(x), ..., +(x) denote all thv normalized
eigenfunctions of N corresponding to the eigenvalue and the d’s
are arbitrary cmplex scalars.

Proof. In fact, it is readily found that, for f(x)define by (F),

=ep() (for almost every A).

oreover, if is not an eigenvalue of N, it is obvious by

hypotheses that (N-,I)p() is not ero almost everywhere on

A for any . Since, on the other hand, for any element ()of the

orthogonal complement of in (A, ) (N-,I)k() also belongs

to itself, the results just established imply the validity of the
former half of the resent theorem.

Next we suose that is 2 in {L} and that
-2+L(-1,2,’",-1,++1,++,’"). hen the

equality
+e

=1 =
always holds almost everywhere on A for any system of finite complex

constants g (j- to +), while (N-,I)() never vanishes

almost everywhere on A for any () different from i()

+ ). oreover, even in this ease (N-,I)k() has the same
=1

property as that stated above. Consequently the general solution of
(D) is given by f() in (G). The latter half of the theorem has thus
been roved.
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