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§1. Riemannian manifolds of constant curvature.

Let M be a connected Riemannian manifold with metric tensor
g. We always assume that the dimension n of M is =3. Let V' be
the covariant differentiation with respect to the Riemannian connection
associated with g. The curvature tensor field R is given by

RX,Y)Z=V VyZ VeV xZ—V 5.7,

where X, Y, and Z are vector fields on M.

Then we have

(1) R(X,Y)+R(Y, X)=0,
(2) R(X,Y)Z+R(Y,Z)X+R(Z, X)Y=0 (Bianchi’s st identity),
(3) VeR)Y, Z)+rR)Z, X))+ B)(X, Y)=0

(Bianchi’s 2nd identity).
The Riemannian curvature temsor field of M, denoted also by
R, is the tensor field of covariant degree 4 defined by
R(X,, X,, X;, X))=9(R(X;, X)X, X)).
Then R possesses the following properties:

(4) R(X,, X;, X;, X))+ R(X,, X, X, X,)=0,

(1) R(X,, X;, X, X))+ R(X, X,, X,, X3)=0,

( 5 ) R(Xh Xz; XSy X4):R(X39 X4y le XZ):

(2’) R(Xh X29 X3! X4)+R(le X3) X49 X?)_I"R(Xu Xu Xzy Xa)zoy
(3) V £ BN Xy, X;y X, X))+ £ R)(X,, X, X, Xi)

+ £ R)(X,, X;, X, X3)=0.

M is a Riemamnian manifold of constant curvature if and
only if
(6) R(X, Y)Z=k{9(Y, Z)X—9(X, Z)Y}
where k is a constant.

If R}, and g;; are the components of the curvature tensor field
and the metric tensor with respect to a local coordinate system,
then the components R,;, of the Riemannian curvature tensor are
given by n
R :;lgimRﬂclv
If M is a Riemannian manifold of constant curvature, then

R}, = k(aigﬂ — 019 1)
or
R =k(9:95— 9u9ir)-
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Theorem 1. M is a Riemannian manifold of constant curva-
ture if and only if R(X, Y)Z is a linear combination of X and
Y for every X, Y, and Z.

Proof. If M is a Riemannian manifold of constant curvature,
then the equation (6) means that R(X, Y)Z is a linear combination
of X and Y.

To prove the converse, let R(X, Y)Z be a linear combination of
X and Y for every X,Y, and Z. Then there exist two tensor fields
« and B of covariant degree 2 such that

RX, YZ=o(Y,Z)X+B(X,Z)Y.
From (1) we have
{a(Y, Z2)+B(Y, ZNX+{a(X, Z)+B(X, Z)} Y=0.
Since X, Y, and Z are arbitrary, we get a+S8=0. Hence we have

(7) RX, V=Y, Z)X—a(X, Z)Y.
This, together with (2), implies
(8) aX,Y)=a(Y, X) for every X and Y.

Let a;; denote the components of @. Then (7) can be written as
follows:

( 7’) R;kl=al,5},——ak33}

or

() Riju= ;00— ;9.
This, together with (4), implies

(9) 05— Q@i+ Ayl — Qg 50 = 0.

Let (¢%) denote the inverse matrix of (g;;). Multiplying (9) by g%
and summing with respect to ¢ and [ we obtain a:—a—g, where
a= En] g"'a;;. Hence we have "
m R(X, Y)Z=k{g(Y, Z)X—g¢(X, Z)Y},
that is,
Ry =k(059,,—0ig:1),
where kz% is a function on M. This, together with (8), implies

kw0951~ 0i91) + k,1(0ig jm — 0ng 1) + F,1(07g 1 — 04 im) = 0,
where k,, denote the components of the covariant differential Fk.
Taking the trace with respect to 7 and m we obtain
k95— k.9,:=0.
Multiplying by g¢* and summing with respect to j and & we have
k,=0.
Hence k& is a constant.

Let M be a manifold with torsionfree affine connection and
curvature tensor field R. It is natural to say that M is a manifold
of constant curvature if R(X,Y)Z is a linear combination of X and
Y for every X, Y, and Z.
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§ 2. Kahlerian manifolds of constant holomorphic curvature,

Let M be a connected Kahlerian manifold with complex structure
J and with Kahlerian metric g. We always assume that the real
dimension 2n of M is =4. Let V be the covariant differentiation
with respect to the Kihlerian connection associated with (J, g).
Then the curvature tensor field R satisfies (1), (2), (3), and
10) RWJX,JY)=R(X,Y),

(11) R(X,Y)JZ=JR(X, Y)Z.

M is a Kahlerian manifold of constant holomorphic curvature
if and only if
(12)  R(X,Y)Z=ky(Y, Z)X—9(X, Z)Y

+Y, Z2)YJX—-2AX, Z)JY—-22X, Y)JZ},
where 2 denotes the 2-form defined by (X, Y)=g¢(JX, Y) for every
X and Y and %k is a constant.

Theorem 2. M 1s a Kdihlerian manifold of constant holo-
morphic curvature if and only iof R(X,Y)Z is a linear combination
of X,Y,JX,JY, and JZ for every X,7Y, and Z.

Proof. If M is a Kgahlerian manifold of constant holomorphiec
curvature, then the equation (12) means that R(X, Y)Z is a linear
combination of X, Y, JX,JY, and JZ.

To prove the converse, let R(X, Y)Z be a linear combination of
X,Y,JX,JY, and JZ for every X,Y, and Z. Then there exist five
tensor fields a, 8, 2, ¢, and v of covariant degree 2 such that

RX,Y)Z=a(Y, Z)X+B(X, Z)Y+ XY, Z)JX
+u(X, Z)JY+v(X, Y)JZ.
From (10) we have
(Y, Z)+2J Y, ZNX+{8(X, Z)+ I X, Z)} Y
+{Y, Z)—a(JY, Z)JX+{UX, Z)-B(IX, Z)}JY
+{(X,Y)—v(JX,JY)JZ=0.
Since X, Y, and Z are arbitrary, we get

(13) AY, Z)=a(JY, Z),
(14) wX, Z)=p(JX, Z),
(15) v(X, Y)=v(JX,JY)

for every X, Y, and Z.
From (1) we have
{a(Y, Z2)+B8(Y, Z}X+{(X, Z)+B(X, Z)} Y

+{(Y, Z2)+ (Y, 2N X+{AX, Z)+ (X, Z)}JY
+{(X, Y)+u(Y, X)}JZ=0.

Since X, Y, and Z are arbitrary, we get

16) a+B=0,

an A+ p=0,

and
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(18) (X, Y)+u(Y, X)=0 for every X and Y.
Hence we have
RX,Y)Z=a(Y,Z)X—a(X,Z)Y
+a(JY, Z)JX—-a(JX, Z)JY+v(X, Y)JZ.

This, together with (2), implies
(19) a(X, Y)=a(Y, X),
(20) X, Y)=a(X,JY)—a(JX, Y) for every X and Y.

On the other hand, from (11) we have

(21) aX,Y)=a(JX,JY) for every X and Y.
This, together with (20), implies
(22) (X, Y)=—2a(lJX,Y).

Hence we have
(23) RX, Y=a(Y, 2)X—a(X,Z)Y
+a(JY, Z)JX—a(JX, Z)JY—20(J X, Y)JZ.
Let Ji, 2,;, and «;; denote the components of J, 2, and «
respectively. Then (23) can be written as follows:
(23) Rju=a;0;—a,;0i+ agllaajJi’Ji — ag]laaj wdi— 2a2=1 aydid;;
or
(28")  Riju=04;9:—yiga+ a2=1 i 12— azﬂ Qo825 — 2‘;1 i Qi
This, together with (4), implies
2n 2n
(24) Q05— OpiQs + uEzlaaij‘Qm— ‘Z}laar]ﬁ

2n 2n
T — Qi+ EaaiJfij‘glaai #2;,=0.
Multiplying (24) by ¢* and summing with respect to ¢ and ! and
2n
using (21) we obtain azzig where a= 37 ¢g"'a;;. Hence we have
" =t

RX, YZ=k{g(Y, Z)X—9(X, Z)Y+XY, Z)JX
—QX, Z2)JY—-22X, Y)JZ},
where k:% is a function on M. By the similar way as in

Theorem 1, we can see that k& is a constant.

Let M be a complex manifold with a torsionfree affine connection
which preserves the almost complex structure tensor J. It is natural
to say that M is a manifold of constant holomorphic curvature if
R(X,Y)Z is a linear combination of X, Y, JX,JY, and JZ.
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