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41. Integration with Respect to the
Generalized Measure. I

By Masahiro TAKAHASm
Department of Mathematics, Nara Medical College

(Comm. by Kinjir6 KoNoo1, t.J.., March 13, 1967)

1. Introduction. In this paper, we are going to deal with
the integration theory with respect to the topological-additive-group-
valued measur 1.

Let Mbe a set and S a ring of subsets of M(S is a ring in
the algebraic sense, of which each element is an idempotent). Let
tt be a measure 1 defined on S taking values in a topological ad-
ditive group G.

Let K be a topological additive group and let be the additive
group of all K-valued functions defined on M (the sum of two func-
tions in 5 is defined in the usual way).

For X e S and fe 5, let us denote by Xf the function in such
that

(Xf)(x)_f() if e X,
to if xeM-X.

Then each X e S operates as a homomorphism on the group . We
further assume that is a topological group with some topology
such that each X e S operates as a continuous map on .

Let J be a topological additive group and suppose that a map
of G x K into J, denoting by g-k the image of (g, k), g e G, k e K, is
defined, satisfying the conditions:

1) (g+g’).k=g.k+g’.k,
2) g.(k+k’)=g.k+g.k’,

for each g, g’ e G and k, k’ e K.
As an illustration, suppose that M is the real line and G=K--J

is the topological ring of all real numbers. Let S be the pseudo-
a-ring 13 of measure-finite Lebesgue measurable sets and / the
Lebesgue measure on S (strictly, its restriction on S). Now we can
consider as a topological additive group introducing the topology
in such a way that a sequence of functions in 5 converges in the
space if and only if the sequence uniformely converges as a func-
tional sequence. Then, each X e S operates as a continuous homo-
morphism of into itself.

1) X+Y=(X-Y)U(Y-X),XY=XfqY for each X, YeS.
2) Lebesgue measure.
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Let _q be the set of all bounded measurable functions in
Then _q is an 3-invariant) subgroup of .

For X e , g e _if, write

Ixgd[- J(X, g).

Then J is a map of 3 _q into J with the properties:
(.) The map J-g(X,g)is a continuous homomorphism of

into J with respect to g for any fixed X.
(**) J(XY, g)=g(X, Yg) for each of X, Y e 3, and g e _5.

(***) If g(x)--k for every x e M, then (X, g)=p(X).k.

It will be known that the Lebesgue integral xgdl-J(X, g) of

g e _5’ over X e 3 is characterized by these three properties.
In general, we shall define an integral J as a map of 3 , _5’

being an 3-invariant subgroup of , into J satisfying the conditions
above.

In part I in this paper, we shall deal in some abstract way with
the process of extending a primitive integral to an integral which
has a wider class of ’integrable’ functions.

It may be noted that for the purpose of constructing an integral
the countable additivity of the measure / is of no use. This prop-

erty is used to prove that X,g-,(X,g) for some X’s
in 3 and ge_.

2. An abstract integral and an extension theorem. Let
be a ring (in the algebraic sense), of which each element is an
idempotent. Let be a topological additive group and assume that
each X e 3 operates as a continuous homomorphism of into itself
satisfying the conditions"

l) (X/ Y)f-Xf/ Yf if XY=O,
2) (XY)f X( Yf),

for each X, Y e 3 and fe . Then for a topological additive group
J we shall call the triplet (4", , ]) an abstract integral structure
or briefly a structure. If (, , J) is a structure, for any 3-invariant
subgroup of , (3, , J) is a structure.

Let (, , J) be a structure. A closed subgroup _Q of is called
an i-closed subgroup of if it holds that ={gig e , Xg e for
any X e }. If ’ is an /-closed subgroup of
invariant subgroup and consequently (3, ’, J) is a structure.

Proposition 2.1. Let (q, , J) be a structure and a subset
of. Then there is the smallest i-closed subgroup of contain-
ing

3) X’c_6’ for each X3.



180 M. TAKAHASHI [Vol. 43,

Proof. Let /" be the class of all /-closed subgroups of ff con-
taining /. Since fie/’, it is sufficient to show that f’l Je/" and

this is easily seen.
The subgroup _q of ff in Proposition 2.1 is called the integral

closure of / in ff.)

Let (, if, J) be a structure. A map q of ff into J is called
an abstract integral or briefly an integral with respect to (, if, J)
if it satisfies the conditions:

(.) The map =(X, f) is a continuous homomorphism of ff
into J with respect to f for any fixed X.

(**) q(XY, f)-(X, Yf) for each X, Y e 3 and fe .
We shall state the main theorem with respect to the extension

of an abstract integral, which will be proved in part II of this paper.
Theorem 1. Let (, , J)be a structure and assume that J is

a Hausdorff, complete group. Let be an -invariant subgroup of
and let q be an integral with respect to the structure (, , J).

Then the integral q is uniquely extended to an integral with re-

spect to the structure (, , J), where is the integral closure of
in.

:3. Integral maps and some propositions.
Assumption. In this section we assume that (,, J) is a

structure and is an 3-invariant subgroup P of .
Proposition :3.1. For each X, Y e 3, it holds that
1) XY= YX,
2) X+X=O
3) ZX-X, ZY= Y for some Z e .
Proof. The formula X+ Y=(X+ Y) X"+XY+ YX+ Y" X

+XY+ YX+ Y implies that XY+ YX=O. Replacing Y by X we
have X+X=X"+X"-O, which proves 2). Further we have XY
=XY+(XY+ YX)-(XY+XY)+ YX= YX, proving 1). Putting
Z=X+ Y+XY, we have 3).

Proposition 3.2. If is an integral with respect to (q, , J),
then

J(X+ Y, f)- q(X, f)+ q( Y, f) if XY-O, for each X, Y e , and

fe.
Proof. q(X+ Y, f)-q((X+ Y)", f)-q(X+ Y, (X+ Y)f)-q(X

+ Y, Xf+ Yf)-q(X+ Y, Xf)+q(X+ Y, Yf)-q((x+ Y)X, f)+g((X
+ Y)Y, f)-J(X, f)+J(Y, f).

4) Let be the group stated in the example in section 1 and let J(: be the
set of all constant valued functions in . Then the subgroup ’ of T in that

example is contained in the integral closure J of oY in . In fact K is the class
of functions f in T such that Xf for any X3 (cf. Propostion 3. 17).
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Remark. To obtain the following propositions, we can replace
the assumption that 3 is a ring, of which each element is an idem-
potent, by a weaker one: q is a set and for each X, Ye, the
product XY is defined as an element of 3, satisfying the conditions:

a) X-X,
b) XY= YX,
c) ZX=X, ZY- Y for some Z e 3,

for each X, Y e 3. Consequently the condition ’(X+ Y)f=Xf+ Yf
for X, Y e such that XY=O and for any fe if’ may be omitted.

Proposition 3.3. If X, Y e , then
1) X is an -invariant subgroup of ,
2) XY if X=XY.
Proposition 3.4. is an -invariant subgroup of .
Proof. The continuity of X e 3 and the 3-invariance of . im-

plies the 3-invariance of as XX.
Proposition 3.5. The following three conditions are mutually

equivalent.

1) For each g e G, there exists X e such that Xg-g,
2) ’ U (X’),

3) ’= U (X’).

If an -invariant subgroup ’ of satisfies the mutually equiva-
lent conditions, in Proposition 3.5, then we shall say that _q is
perfect.

Proposition 3.6. If we put ’-U (X’), ’ is the larges$

perfect subgroup of .
Proof. To prove that ’ is a subgroup of ’, since _6", it

is sufficient to show that Xf- Yg e ’ for each X, Y e 3 and f, g e
The 8-invariance of _q implies that Xf- Yg e . For Ze 3 such
that ZX=X, ZY= Y, we have Xf- Yg-ZXf-ZYg-Z(Xf- Yg)
e Z’. The remaining part is easily verified.

The largest perfect subgroup _q’ of ’ in Proposition 3.6 is called
the perfection of ’.

Proposition 3.7. The following three conditions are mutually
equivalent.

1) If fe and if Xfe for each Xe3, then fe ,
2) _q. (X-_q),")

3) a= (x-’a).

If an 8-invariant subgroup _q of satisfies the mutually equiva-

5) means the closure of

_
in in the topological sense.

6) X-1 means the inverse map of the map X of into itself.
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lent conditions in Proposition 3.7, then we shall say that is -coIdt. A necessary and sucient condition that an q-invariant

subgroup _6’ of ff be -closed is that _6’ be closed in and if-complete.
Proposition 3.8. If we put "-- (X-I’), ’" is the smallest

x6
-complee subgroup of containing .

The smallest if-complete subgroup " of ff containing _ff in
Proposition 3.8 is called the -completion of .

Proposition 3.9. The perfection ’ of the -completion of
coincides with he perfection of . If, in particular, is perfect,
then ’-.

Proposition :}.10. The -completion " of the perfection of
coincides with the -completion of . If, in particular, is -complete, then "-.
A map I of ff into J is called an integral map with respect to

the structure (S, if, J) if, for each X e S, the restriction Ix of I on
the group Xff is a continuous homomorphism.

Proposition 3.11. If I is an integral map with respect to
(3, , J) and if is perfect, then I is a homomorphism of into J.

Proof. Our assertion is that I(g + h) I(g) + I(h) for each g, h e .
The perfectness of ’ implies that there exist X, Ye such that
g-Xg, h-Yh. For Ze such that ZX=X, ZY=Y, we have
g-Xg-ZXg-Zg eZ and similarly h e Z’. Since the restriction

I of I on Z’ is a homomorphism, it follows that I(g + h) I(g/ h)
I(g) + I(h) I(g) + I(h).
Proposition 3.12. Let q be an integral with respect to

(, , J) and let ’ be the perfection of . Then there uniquely
exists an integral map I with respect to (q, ’, J) such that

I(Xg)-q(X, g) for X e 3 and g e .
Proof. Let us prove that (X, g)-C(Y, h) for X, Ye and

g, h e such that Xg- Yh. Putting Xg- Yh=f, we have f= Yh
Yh- Yf. Hence (X, g)-(X, g)=(X, Xg)=(X, f)-q(X, Yf)
(XY, f). Similarly we have (Y, h)-(XY, f) and this implies

that (X, g)-C(Y, h). Thus we can define a map I of " into J
such that I(Xg)-C(X, g)for each X e and g e _. It is easily seen
that I is an integral map required and the uniqueness of I is obvious.

The integral map I in Proposition 3.12 is called the perfection
of .

Proposition 3.13. Let I be an integral map with respect to
(q, , J) and let " be the -completion of. Then there uniquely
exists an integral with respect o (, ", J) such that

(X, g)- I(Xg) for X e and g e ".
The integral in Proposition 3.13 is called the -completion
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of L
Proposition 3.14. If I is an integral map with respect to

(q, , J), then the perfection I’ of the -completion of I is the re-
striction of L If, in particular, is perfect, then I’ coincides
with L

Proposition 3.15. If is an integral with respect to (, _if, J),
then the -completion q" of the perfection of is an extension of
7. If, in particular, is -complete, then ’ coincides with

Proposition 3.16. If is an integral with respect to (, , J)
and if" is the -completion of , then q is uniquely extended to
an integral q" with respect to (, _if", J).

Proof. This follows immediately from Propositions 3.15 and
3.10.

The integral " in Proposition 3.16 is called the -completion
of J.

Proposidon 3.17. If is cosed in , then the -completion

" of is closed in .
Proof. Since each X 3 is continuous, we have "- l (X-I)

l (X-) [ (X--) l (X-i)-’’, which proves the prop-
x(,S x3

osition.
Corollary. The integral closure of in is the -completion

" of the closure of in .
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