61. A Generalization of Durszt's Theorem on Unitary ρ-Dilatations

By Takayuki Furuta
Faculty of Engineering, Ibaraki University
(Comm. by Kinjirô Kunugi, m.J.A., April 12, 1967)

In this paper, an operator means a bounded linear operator on a Hilbert space and we use the notations and terminologies of [1].

Let $\mathcal{C}_{\rho}(\rho \geqq 0)$ denote the class of operators T in a Hilbert space \mathfrak{Q}, whose powers T^{n} admit a representation

$$
T^{n}=\rho \cdot P U^{n} \quad(n=1,2, \cdots)
$$

where U is a unitary operator in some Hilbert space K containing \mathfrak{S} as a subspace and P denotes the projection of $\mathfrak{\Re}$ onto \mathfrak{S}. The following theorems were proved by B.Sz-Nagy and C. Foias in [1].

Theorem A. An operator T in \mathfrak{S} belongs to the class \mathcal{C}_{ρ} if and only if it satisfies the following conditions:

$$
\|h\|^{2}-2\left(1-\frac{1}{\rho}\right) \operatorname{Re}(z T h, h)+\left(1-\frac{2}{\rho}\right)\|z T h\|^{2} \geqq 0
$$

for $h \in \mathfrak{S}$ and $|z| \leqq 1$.
(II) The spectrum of T lies in the closed unit disk.

Theorem B. \mathcal{C}_{ρ} is a non-decreasing function of ρ in the sense that

$$
\mathcal{C}_{\rho_{1}} \subset \mathcal{C}_{\rho_{2}} \quad \text { if } 0 \leqq \rho_{1}<\rho_{2}
$$

These theorems were already proved in [1][2]. Meanwhile E. Durszt [2] has given a simple necessary and sufficient condition for a normal T to belong to \mathcal{C}_{ρ}. In this paper we generalize Durszt's theorem for a suitable class of non-normal operators and show some related results.

Definition 1. An operator T is called a normaloid if \|T\| $=\sup _{\|x\| \leq 1}|(T x, x)|$ or equivalently, the spectral radius is equal to $\|T\|$ ([3]-[7]).

Theorem 1. If T is a normaloid, $T \in \mathcal{C}_{\rho}$ if and only if

$$
\|T\| \leqq\left\{\begin{array}{cl}
\frac{\rho}{2-\rho} & \text { if } 0 \leqq \rho \leqq 1 \\
1 & \text { if } \rho \leqq 1 .
\end{array}\right.
$$

Proof. Let $0 \leqq \rho \leqq 1$. In this case (I_{ρ}) is equivalent with ($\left.I_{\rho}^{\prime}\right) \quad(2-\rho)\|z T h\|^{2}-2(1-\rho) \operatorname{Re}(z T h, h)-\rho\|h\|^{2} \leqq 0$ for $h \in \mathfrak{S} .|z| \leqq 1$ That is
($\left.I_{\rho}^{\prime \prime}\right) \quad(2-\rho)\|T h\|^{2} \gamma^{2}-2(1-\rho)|(T h, h)| \gamma \cos \psi-\rho\|h\|^{2} \leqq 0$ for $h \in \mathfrak{G}, 0 \leqq \gamma \leqq 1$,
where $z=\gamma e^{i \theta}, \psi=\varphi+\theta, \varphi$; argument of ($T h, h$) or equivalently, (2) $\quad(2-\rho)\|T h\|^{2} \gamma^{2}+2(1-\rho)|(T h, h)| \gamma-\rho\|h\|^{2} \leqq 0$ for $h \in \mathfrak{S}, 0 \leqq \gamma \leqq 1$.
Since T is a normaloid, (2) is satisfied if and only if

$$
\begin{aligned}
(2-\rho)\|T\|^{2} \gamma^{2}+2(1-\rho)\|T\| \gamma-\rho \leqq 0 & \text { for } 0 \leqq \gamma \leqq 1 \\
(\|T\| \gamma+1)\{(2-\rho)\|T\| \gamma-\rho\} \leqq 0 & \text { for } 0 \leqq \gamma \leqq 1
\end{aligned}
$$

Hence

$$
\|T\| \gamma \leqq \frac{\rho}{2-\rho} \quad \text { for } 0 \leqq \gamma \leqq 1
$$

Consequently,

$$
\begin{equation*}
\|T\| \leqq \frac{\rho}{2-\rho} \tag{3}
\end{equation*}
$$

Therefore (3) is equivalent with (I_{ρ}) for $0 \leqq \rho \leqq 1$ if T is a normaloid. Now for a normaloid T, the spectral radius is equal to $\|T\|$, so (II) is true if and only if $\|T\| \leqq 1$, consequently $T \in \mathcal{C}_{\rho}$ if and only if (3) holds.

If $\rho \geqq 1$, by the same argument (II) holds if and only if $\|T\| \leqq 1$. By the fact that \mathcal{C}_{1} consists of the contractions exactly and the monotonity of \mathcal{C}_{ρ} given in Theorem B, we have $T \in \mathcal{C}_{\rho}$ for $\rho \geqq 1$ if and only if $\|T\| \leqq 1$.
q.e.d.

Since a hyponormal operator, and hence a normal operator is a normaloid ([6][7]), Theorem 1 gives a generalization of Durszt's theorem concerning ρ-dilatations of operators. For a normaloid T, there exists an approximate proper value having the absolute value $\|T\|$, so our theorem may be proved along E. Durszt's method, but our proof seems to be somewhat direct.

Theorem 2. Let \bigcap_{1} be a maximal family of permutable normal operators in \mathcal{C}_{1} and put $\mathscr{I}_{\rho}=\mathscr{I}_{1} \cap \mathcal{C}_{\rho}$, then the family $G=\left\{\eta_{\rho}, 0 \leqq \rho \leqq 1\right\}$ forms a commutative semi-group with unit \mathscr{I}_{1}.

Proof. If T_{i} belongs to $\Im_{\rho_{i}}(i=1,2)$ respectively,
then

$$
\left\|T_{i}\right\| \leqq \frac{\rho_{i}}{2-\rho_{i}}(i=1,2)
$$

so we get

$$
\begin{equation*}
\left\|T_{1} T_{2}\right\| \leqq\left\|T_{1}\right\|\left\|T_{2}\right\| \leqq \frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}} \tag{4}
\end{equation*}
$$

Since T_{1}, T_{2} are permutable normal operators, they are double permutable i.e. $T_{1} T_{2}^{*}=T_{2}^{*} T_{1}, T_{1}^{*} T_{2}=T_{2} T_{1}^{*}$, so $T_{1} T_{2}$ is normal ([8][9]), consequently by (4)

$$
T_{1} T_{2} \in \Re \frac{\rho_{1} \rho_{2}}{1+\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}
$$

We notice that

$$
\frac{\rho_{1} \rho_{2}}{1+\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)} \leqq \rho_{1} \rho_{2} \leqq \operatorname{Min}\left[\rho_{1}, \rho_{2}\right] \leqq 1
$$

Hence we may define a product of $\mathscr{I}_{\rho_{1}}, \mathscr{I}_{\rho_{2}}$ by

$$
\Re_{\rho_{1}} \cdot \Re_{\rho_{2}}=\Re_{l}^{1+\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}
$$

This product clearly satisfies the commutative law and associative law and has η_{1} as a unit. That is

$$
\begin{aligned}
& \Re_{1} \cdot \Re_{\rho}=\Re_{\rho} \cdot \Re_{1}=\Re_{\rho} .
\end{aligned}
$$

It is evident that $\Pi_{\rho}(\rho \neq 1)$ has no inverse element.
Denote by A the class of the functions of a complex variable such that

$$
v(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { with } \quad \sum_{n=1}^{\infty} a_{n} \leqq 1, \quad a_{i} \geqq 0 \text { for all } i .
$$

Theorem 3. Let $u(z) \in A$, and η_{ρ} be the class of Theorem 2. Then $T_{i} \in \Re_{\rho_{i}}(i=1,2)$ implies $u\left(T_{1} T_{2}\right) \in গ_{m}$ and

$$
\Re_{m} \subset \Re_{\rho_{1}} \cdot \Re_{\rho_{2}} \subset \Re_{\rho_{1}}, \Re_{\rho_{2}} \quad \text { where } \quad m=\frac{2 u\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right)}{1+u\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right)} .
$$

Proof. By the same reason in the proof of Theorem 2, $u\left(T_{1} T_{2}\right)$ $=\sum_{1}^{\infty} a_{n}\left(T_{1} T_{2}\right)^{n}$ is a normal operator, so

$$
\begin{aligned}
\left\|u\left(T_{1} T_{2}\right)\right\| & \leqq \sum_{1}^{\infty}\left|a_{n}\right|\left\|\left(T_{1} T_{2}\right)^{n}\right\|=\sum_{1}^{\infty} a_{n}\left\|T_{1} T_{2}\right\|^{n} \\
& \leqq \sum_{1}^{\infty} a_{n}\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right)^{n}=u\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right) \leqq 1
\end{aligned}
$$

by Theorem 1,

$$
u\left(T_{1} T_{2}\right) \in \Re_{m} \quad \text { where } \quad m=\frac{2 u\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right)}{1+u\left(\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}\right)} .
$$

Moreover, let

$$
l=\frac{\rho_{1} \rho_{2}}{1+\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}, \quad p=\frac{\rho_{1}}{2-\rho_{1}} \cdot \frac{\rho_{2}}{2-\rho_{2}}
$$

so

$$
l-m=\frac{l+l u(p)-2 u(p)}{1+u(p)}=\frac{l-(2-l) u(p)}{1+u(p)} .
$$

The denominator of right hand is always positive and numerator is equal to

$$
\begin{aligned}
l-(2-l) u(p) & =l-\frac{2}{1+p} \sum_{1}^{\infty} a_{n} p^{n}=l-\frac{2 p}{1+p} \sum_{1}^{\infty} a_{n} p^{n-1}=l-l \sum_{1}^{\infty} a_{n} p^{n-1} \\
& \geqq l-l \sum_{1}^{\infty} a_{n} \geqq 0 \quad \text { therefore } \quad l \geqq m .
\end{aligned}
$$

By virtue of Theorem B,

$$
\Re_{m} \subset \Re_{\rho_{1}} \cdot \Im_{\rho_{2}} \subset \Re_{\rho_{1}}, \Re_{\rho_{2}}
$$

References

[1] B. Sz-Nagy and C. Foias: On certain classes of power bounded operators in Hilbert space. Acta Sci. Math., 27, 17-25 (1966).
[2] E. Durszt: On unitary ρ-dilations of operators. Ibid., 27, 245-250 (1966).
[3] J. G. Stampfli: Hyponormal operators. Pacific Jour. Math., 12, 1453-1458 (1962).
[4] T. Saitô and T. Yoshino: On a conjecture of Berberian. Tôhoku Math. Jour., 17, 147-149 (1965).
[5] G. H. Orland: On a class of operators. Proc. Amer. Soc., 15, 75-79 (1964).
[6] S. K. Berberian: Introduction to Hilbert Space. Oxford University Press. New York (1961).
[7] T. Andô: On hyponormal operators. Proc. Amer. Math. Soc., 14, 290-291 (1963).
[8] P. R. Halmos: Commutativity and spectral properties of normal operators. Acta. Sci. Math., Szeged., 12, 153-156 (1950).
[9] B. Fuglede: A commutativity theorem for normal operators. Proc. Nat. Acad. Sci., U.S.A., 36, 35-40 (1950).

