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61. A Generalization of Dursxt’s Theorem
on Unitary P-Dilatations

By Takayuki FURUTA
Faculty of Engineering, Ibaraki University
(Comm. by Kinjird6 KUNUGI, M.J.A., April 12, 1967)

In this paper, an operator means a bounded linear operator on
a Hilbert space and we use the notations and terminologies of [17].
Let C,(0=0) denote the class of operators T in a Hilbert space
9, whose powers 7" admit a representation
(1) T*=p-PU" n=1,2,...)
where U is a unitary operator in some Hilbert space K containing
O as a subspace and P denotes the projection of & onto . The
following theorems were proved by B.Sz-Nagy and C. Foias in [1].
Theorem A. An operator T in O belongs to the class C, if
and only if it satisfies the following conditions:

(L) ||hll”—2(1—%> Re (2Th, h)+(1—%)||zTh||20

for he® and |z|=1.

01)) The spectrum of T lies in the closed unit disk.

Theorem B. C, is a mon-decreasing function of 0 in the sense
that

Co,CCo, if 0=0,<p,.

These theorems were already proved in [17[2]. Meanwhile
E. Durszt [2] has given a simple necessary and sufficient condition
for a normal T to belong to C,. In this paper we generalize Durszt’s
theorem for a suitable class of non-normal operators and show some
related results.

Definition 1. An operator 7 is called a normaloid if || T|

= sup |(Tx,x)| or equivalently, the spectral radius is equal to || T'||
lz]|=1

(31—L7D.

Theorem 1. If T is a normaloid, TeC, if and only if

P if o=p=sl
T]={2—p T
1 if p=1.

Proof. Let 0=<p=<1. In this case (I,) is equivalent with
(I)) @2—p)||2Th|*—2(1—p)Re (2Th, k)—pP|| k|0 for he . [2z|<1
That is
() @-o)|| Th|F—2(1—p)|(Th, k) |7 cosy—pP || h|*<0

for he 9,071,
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where z=7e", y+=¢+0, ¢; argument of (Th, k) or equivalently,
(2) @-p) || TrIPr+2—p)|(Th, k)| Y—p|lL|[*<0
for he ,0=v=1.
Since T is a normaloid, (2) is satisfied if and only if
-l TIFr"+2Q—0) || T|lv—p=0  for 0=7=1
(IITy+1{@-o) | Tl|v—p}=0  for 0=7=1.

Hence
T |r=-"2 for 0<v=<1.
2—p
Consequently,
3 T|=—L_.
(3) ITlI=52

Therefore (3) is equivalent with (I,) for 0=<p=<1 if T is a normaloid.
Now for a normaloid T, the spectral radius is equal to || T'||, so
(IT) is true if and only if || T'|| <1, consequently T e (, if and only
if (3) holds.

If p=1, by the same argument (II) holds if and only if || T'||<1.
By the fact that C, consists of the contractions exactly and the
monotonity of £, given in Theorem B, we have Te(, for p=1 if
and only if || T||S1. q.e.d.

Since a hyponormal operator, and hence a normal operator is a
normaloid ([6][7]), Theorem 1 gives a generalization of Durszt’s
theorem concerning p-dilatations of operators. For a normaloid T,
there exists an approximate proper value having the absolute value
[| T|l, so our theorem may be proved along E. Durszt’s method, but
our proof seems to be somewhat direct.

Theorem 2. Let Jl, be a maximal family of permutable
normal operators im C;, and put J,=IJLNC,, then the family
G={,, 0=p=<1} forms a commutative semi-group with unit Jl,.

Proof. If T; belongs to Jl, (i=1, 2) respectively,

then | T2 (i=1,2)
2—p;
so we get
4 TS| T Tlls—C . O |
(4) I TN T TS o 2p,

Since T,, T, are permutable normal operators, they are double per-
mutable i.e. T\TF=T>*T, T*T,=T,T*, so T,T, is normal ([8][97]),
consequently by (4)

T.T,c T 0102 .
! 1+ @A-p)1—p)

We notice that
0,0:
1+@—p)1—p,

) =00.=Min [p,, 0, ]<1
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Hence we may define a product of Jl,, Jl,, by
Ty, Ty =1 2l :
T I+ (- )1 —p)
This product clearly satisfies the commutative law and associative
law and has JI, as a unit. That is
320{3292:720,'3201 :npl‘(mp{mps):(mpl'mp,)mps
mpm,,:mp'ml:fnp.

It is evident that Jl,(0+1) has no inverse element.

Denote by A the class of the functions of a complex variable
such that

v(2)= i} a,z* with i} a,<1, a;=0 for all z.
n=1

n=1

Theorem 3. Let w(z)e A, and Jl, be the class of Theorem 2.
Then T.eJl,, (i=1, 2) implies w(T,T,) € Jl,, and

2“( Zflp1 ) _2%>

A=)

Proof. By the same reason in the proof of Theorem 2, u(T,T,)
=>a,(T,T,)" is a normal operator, so
1

lu(TT) = e (T =23 an || T e |1

éi“”(zflpl ) Zfzp2 )“:u(zflpl ) 2f2p2 )gl

mmcmp1°mp2Cmpl, 32,12 ’Whe’l‘e m=

by Theorem 1,

2—0, 2—p,

wW(T,T) e T, where m= o o
1+u<——p‘ . O )

2—0, 2—p,

Moreover, let
1= 0,0 , p= O . 0O R
1+(1—-p)1—p,) 2—p, 2-p,
SO
l—m =t —2u(p) _ 1—@2—lup)
1+u(p) 1+u(p)

The denominator of right hand is always positive and numerator is
equal to

1—(2—1 =]—_“ pr=1—_2r D =113 a,p"?
@—Dhu(p) Tip 2P 1+p 310.p 310.p

=11 i @,=0 therefore I=m.
1

By virtue of Theorem B,
TN ST+ Tp, C T,y T, q.e.d.
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