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1. H. A. Dye 2 has laboriously investigated the structure
of measure preserving transformations. In his study, Maharam’s
lemma plays an eminent role.

It seems natural to consider that a non-commutative version of
Maharam’s lemma is useful in the theory of von Neumann algebras.
We shall introduce a notion of Maharam subalgebra (cf. Definition
in 2), motivated by Maharam’s lemma.

In this paper, we shall treat subfactors of II-factors which are
Maharam subalgebras. Maharam subalgebras in general von
Neumann algebras of finite type will be discussed in a subsequent
paper.

2. In the first place, we shall state briefly main properties of
the conditional expectation of a finite von Neumann algebra introduced
and discussed by H. Umegaki 5.

Let // be a finite factor, then there exists a unique faithful
normal trace on / such that (I)-1. Let be a subfactor
of /. Then for each A in ;/, there exists a normal linear
mapping A--A of / onto which has the following properties"
1 (AB)- (AB), for A e / and B e _,

(2) A-0 and A>=0 implies A-0,
(3) A=>0 implies A’0,
(4) A*-A*,
5 (AB) AB, for A e / and B .,

(6)
7 (AB) (BA), for A e / and B e //’.
The mapping will be called the conditional expectation of
relative to . The conditional expectation is uniquely determined
by (1).

Now, we shall introduce the following
Definition. Let // be a finite factor, a subfactor of )/

and the conditional expectation of / relative to . Then
is called a Maharam subalgebra of / if for any A in such
that 0AI, there exists a projection E in // such that

E-A.
The following properties on Maharam subalgebras are clear by
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the definition: Let / be a finite factor,

_
a subfactor of / and

C a subfactor of _, then
(i) If

_
is a Maharam subalgebra of /, then C is a Maharam

subalgebra of /,
and
(ii) if C is a Maharam subalgebra of , then C is a Maharam
subalgebra of /.
These properties seem to indicate that the distance between the
whole algebra and the Maharam subalgebras is sufficiently large.

A sufficient condition that a subfactor of a finite factor is a
Maharam subfactor will be given in the following

Theorem 1. Let be a finite factor and be a subfactor
of . If the relative commutant :-:’ is a II-factor,
then is a Maharam subalgebra of .

Proof. Let A be an arbitrary operator of . such that
O__<A__< I. Then there exists a resolution of the identity E, the
one-parameter family of projections in

_
such that

A-IlodE.
Let us put

F(n, i) E-
and

A-,(i- 1)2-’F(n, i),

for n- 1, 2, and i- 1, 2, ..., 2. Then A converges strongly to
A.

Let e be the conditional expectation of / relative to _. Be-
cause /_’ is a II-factor, there exists a family

2}{E(n, i) n-1,2, i 1,2,
of projections in ’ which satisfies
( 8 E(n, i)-(i 1)2-,
9 E(n/ 1, 2i- 1)- E(n, i),

and
(10) E(n/ 1, 2i) >__ E(n, i),
for every n and i. Define

G-E(n, i)F(n, i).
/--1

Then G is a projection of / since E(n, i)e’, F(n,
and

F(n, i)F(n, j) 0 for i :/:j.
By (9), (10) and

F(n, i) F(n+ 1, 2i- 1) + F(n/ 1, 2i),
we have
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G__<G+ for n- 1, 2,
Hence G converges strongly to a projection G in /. By the
linearity of the conditional expectation s, (5) and (8), we have

G-E(n, i)F(n, i)

,(i- 1)2-F(n, i)-A.
i=1

On the other hand, is strongly continuous in the unit sphere of
/. Therefore,

G s-lim G- s-lim A A,

that is, is a Maharam subalgera of /.

:. We shall begin with a proof of the following lemma which
may be well-known among specialists:

Lemma 1. Let and (resp. and ) be semi-finite yon

Neumann algebras acting on a Hilbert space (C) (resp. ), then
((R)) (1(R))-( 1)(R)( ),

on (C)(R).
Proof. First we shall show for _--(). Since

[((R)()) ((R)())’-R(’(R)C, ’(R)C)
R(’, )(R)C

and

R(’, ,’)(R)C,
we have
(ii) (R)(e) 1() (d
Similarly, we have
(2) :()(R) ()(R)-;()(R)( 1).
Since /, /,, and are semi-finite, by [1; p. 30 we have
(iS) (R)-(R)() n ((C)) (R),
.and

These equalities (11)-(14) together imply
((R)) (1(R))

(R)_() ;()(R) (R)_() .()(R)
--( n1)() n()Q(n ’1)

(,_ n ,,)(R)( n
which is the desired.

The following lemma is due to Powers [3; Lemma 3.3. For
the sake of completeness, we shall list here a proof.

Lemma 2. Let be a finite factor, and and I-sub-
factors of , then there exists a unitary operator U in such
that UU*-C.
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Proof. Let be the normalized trace of /. Since

_
(resp.

C) is I-factor, there exists a system of matrix units
W; i, j 1, 2, ..., n} (resp.{ V.; i, 3" 1, 2, ..., n})

which spans (resp. C). Since

I=W and I=V,
i==1 i=1

we have

(15) 1--,(W) and 1 ,(V).
i=l i=l

Since the matrix units satisfy
W= W*W and Wl1= WWI*

(resp. V= V*V and V= VV*),
W (resp. V) is equivalent to W (resp. V) with respect to
Therefore, by (15), we have

(W1)---1 (V).

This implies that W is equivalent to V, and that there is a
partially isometric operator V in / such that

W=V*V and V=VV*.
Let us define

U- VVWI.
i=l

Then it is easy to compute that U is a unitary operator in / and
UWU* V for i, j- 1, 2, ..., n.

This proves the lemma.
Lemma 3. Let and be isomorphic finite factors. If
(resp. ) is a I-subfactor of A (resp. ), then the relative

commutant A-AcA[ is isomorphic to -.
Proof. Let be the isomorphism of / onto . Write

_=(//). Then and .. are I-subfactors of . By Lemma
2, there exists a unitary operator U in such that UU*=.
Hence

_
is isomorphic to . On the other hand, / is isomorphic

to . Therefore J/ is isomorphic to .
The following theorem may shed light on the notion of Maharam

subalgebras:
Theorem 2. Let be a II-factor acting on a Hilbert space

(C) and a I-subfactor of , then 2 is a Maharam subfactor
of.

Proof. By (ii), it is sufficient to show that

_
is a Maharam

subfactor of the hyperfinite factor since a I-subfactor in a II-factor
is contained in a hyperfinite subfactor. Hence it is sufficient to
assume that itself is hyperfinite. Then / is isomorphic to
/(R)_. The relative commutant of C(R) in //(R) is (R)C by
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Lemma 1, and =_’ // is a II-factor by Lemma 3. Now, the
theorem is a consequence of Theorem 1.

Without appealing the hyperfinite subfactor, the another proof
of the theorem is also possible based on _4; Lemma 4_.

The class of all Maharam subfactors of a II-factor contains
all subfactors of type I by Theorem 2. However, the class / is
wider than the class of all of all subfactors of type I. This is a
consequence of the following

Theorem 3. In a II-factor , there exists a Maharam II-
subfactor : of .

Proof. By (ii), we can assume, as in the proof of Theorem 2,
/ is hyperfinite. It is well-known that / is isomorphic to /(R)/.
Applying Lemma 1, we have a H-subfactor of / such that
/’ is a H-factor. By Theorem 1,

_
is a Maharam subfactor

which is also of type II.
The existence of a non Maharam proper subfactor of a certain

II-factor will be discussed on another occasion.
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