103. On Maharam Subfactors of Finite Factors ## By Hisashi Choda Department of Mathematics, Osaka Kyoiku Daigaku (Comm. by Kinjirô Kunugi, M.J.A., June 12, 1967) 1. H. A. Dye [2] has laboriously investigated the structure of measure preserving transformations. In his study, Maharam's lemma plays an eminent role. It seems natural to consider that a non-commutative version of Maharam's lemma is useful in the theory of von Neumann algebras. We shall introduce a notion of Maharam subalgebra (cf. Definition in § 2), motivated by Maharam's lemma. In this paper, we shall treat subfactors of II_1 -factors which are Maharam subalgebras. Maharam subalgebras in general von Neumann algebras of finite type will be discussed in a subsequent paper. 2. In the first place, we shall state briefly main properties of the conditional expectation of a finite von Neumann algebra introduced and discussed by H. Umegaki [5]. Let \mathcal{A} be a finite factor, then there exists a unique faithful normal trace ϕ on \mathcal{A} such that $\phi(I)=1$. Let \mathcal{B} be a subfactor of \mathcal{A} . Then for each A in \mathcal{A} , there exists a normal linear mapping $A \rightarrow A^{\varepsilon}$ of \mathcal{A} onto \mathcal{B} which has the following properties: - (1) $\phi(AB) = \phi(A^{\epsilon}B)$, for $A \in \mathcal{A}$ and $B \in \mathcal{B}$, - $(2) A^{\epsilon} = 0 and A \ge 0 implies A = 0,$ - $(3) A \ge 0 implies A^{\varepsilon} \ge 0,$ - $A^{*\varepsilon} = A^{\varepsilon*},$ - $(5) (AB)^{\varepsilon} = A^{\varepsilon}B, \text{for } A \in \mathcal{A} \text{ and } B \in \mathcal{B},$ - $(6) I^{\varepsilon} = I,$ - $(7) (AB)^{\varepsilon} = (BA)^{\varepsilon}, \text{for } A \in \mathcal{A} \text{ and } B \in \mathcal{A} \cap \mathcal{B}'.$ The mapping ε will be called the *conditional expectation* of \mathcal{A} relative to \mathcal{B} . The conditional expectation is uniquely determined by (1). Now, we shall introduce the following Definition. Let \mathcal{A} be a finite factor, \mathcal{B} a subfactor of \mathcal{A} and ε the conditional expectation of \mathcal{A} relative to \mathcal{B} . Then \mathcal{B} is called a *Maharam subalgebra* of \mathcal{A} if for any A in \mathcal{B} such that $0 \le A \le 1$, there exists a projection E in \mathcal{A} such that $$E^{\varepsilon}=A$$. The following properties on Maharam subalgebras are clear by the definition: Let \mathcal{A} be a finite factor, \mathcal{B} a subfactor of \mathcal{A} and \mathcal{C} a subfactor of \mathcal{B} , then (i) If $\mathcal B$ is a Maharam subalgebra of $\mathcal A$, then $\mathcal C$ is a Maharam subalgebra of $\mathcal A$, and (ii) if $\mathcal C$ is a Maharam subalgebra of $\mathcal B$, then $\mathcal C$ is a Maharam subalgebra of $\mathcal A.$ These properties seem to indicate that the distance between the whole algebra and the Maharam subalgebras is sufficiently large. A sufficient condition that a subfactor of a finite factor is a Maharam subfactor will be given in the following Theorem 1. Let \mathcal{A} be a finite factor and \mathcal{B} be a subfactor of \mathcal{A} . If the relative commutant $\mathcal{B}^{\circ} = \mathcal{A} \cap \mathcal{B}'$ is a II_1 -factor, then \mathcal{B} is a Maharam subalgebra of \mathcal{A} . **Proof.** Let A be an arbitrary operator of \mathcal{B} such that $0 \le A \le I$. Then there exists a resolution of the identity E_{λ} , the one-parameter family of projections in \mathcal{B} such that $$A = \int_0^1 \lambda dE_{\lambda}$$. Let us put $$F(n, i) = E_{i2^{-n}} - E_{(i-1)2^{-n}}$$ and $$A_n = \sum_{i=1}^{2^n} (i-1)2^{-n}F(n, i),$$ for $n=1, 2, \cdots$ and $i=1, 2, \cdots, 2^n$. Then A_n converges strongly to A_n . Let \in be the conditional expectation of \mathcal{A} relative to \mathcal{B} . Because $\mathcal{A} \cap \mathcal{B}'$ is a II_1 -factor, there exists a family $$\{E(n, i); n=1, 2, \dots, i=1, 2, \dots, 2^n\}$$ of projections in $\mathcal{A} \cap \mathcal{B}'$ which satisfies (8) $$E(n, i)^{\varepsilon} = (i-1)2^{-n},$$ (9) $$E(n+1, 2i-1) = E(n, i),$$ and (10) $$E(n+1, 2i) \ge E(n, i),$$ for every n and i. Define $$G_n = \sum_{i=1}^{2^n} E(n, i) F(n, i)$$. Then G_n is a projection of \mathcal{A} since $E(n,i)\in\mathcal{A}\cap\mathcal{B}',\,F(n,i)\in\mathcal{B}$ and $$F(n, i)F(n, j) = 0$$ for $i \neq j$. By (9), (10) and $$F(n, i) = F(n+1, 2i-1) + F(n+1, 2i),$$ we have $$G_n \leq G_{n+1}$$ for $n=1, 2, \cdots$ Hence G_n converges strongly to a projection G in \mathcal{A} . By the linearity of the conditional expectation ε , (5) and (8), we have $$egin{align} G_n^arepsilon &= \sum_{i=1}^{2^n} \! E(n,\,i)^arepsilon F(n,\,i) \ &= \sum_{i=1}^{2^n} \! (i-1) 2^{-n} F(n,\,i) \! = \! A_n. \end{split}$$ On the other hand, ε is strongly continuous in the unit sphere of \mathcal{A} . Therefore, $$G^{\varepsilon} = s$$ - $\lim_{n \to \infty} G_n^{\varepsilon} = s$ - $\lim_{n \to \infty} A_n = A$, that is, \mathcal{B} is a Maharam subalgera of \mathcal{A} . 3. We shall begin with a proof of the following lemma which may be well-known among specialists: Lemma 1. Let \mathcal{A} and \mathcal{A}_1 (resp. \mathcal{B} and \mathcal{B}_1) be semi-finite von Neumann algebras acting on a Hilbert space \mathfrak{P} (resp. \mathfrak{P}), then $(\mathcal{A} \otimes \mathcal{B}) \cap (\mathcal{A}_1 \otimes \mathcal{B}_1) = (\mathcal{A} \cap \mathcal{A}_1) \otimes (\mathcal{B} \cap \mathcal{B}_1)$, on $\mathfrak{H} \otimes \mathfrak{R}$. Proof. First we shall show for $$\mathcal{B} = \mathcal{B}_1 = \mathcal{L}(\Re)$$. Since $$[(\mathcal{A} \otimes \mathcal{L}(\Re)) \cap (\mathcal{A}_1 \otimes \mathcal{L}(\Re))]' = \mathbf{R}(\mathcal{A}' \otimes \mathbf{C}_{\Re}, \mathcal{A}_1' \otimes \mathbf{C}_{\Re})$$ $$= \mathbf{R}(\mathcal{A}', \mathcal{A}_1') \otimes \mathbf{C}_{\Re}$$ and $$[(\mathcal{A} \cap \mathcal{A}_1) \otimes \mathcal{L}(\Re)]' = (\mathcal{A} \cap \mathcal{A}_1)' \otimes \mathcal{L}(\Re)'$$ $$= R(\mathcal{A}', \mathcal{A}_1') \otimes C_{\Re},$$ we have $$\mathcal{A} \otimes \mathcal{L}(\Re) \cap \mathcal{A}_1 \otimes \mathcal{L}(\Re) = (\mathcal{A} \cap \mathcal{A}_1) \otimes \mathcal{L}(\Re).$$ Similarly, we have $$\mathcal{L}(\mathfrak{H}) \otimes \mathcal{B} \cap \mathcal{L}(\mathfrak{H}) \otimes \mathcal{B}_1 = \mathcal{L}(\mathfrak{H}) \otimes (\mathcal{B} \cap \mathcal{B}_1).$$ Since $\mathcal{A}, \mathcal{A}_1, \mathcal{B}$, and \mathcal{B}_1 are semi-finite, by [1; p. 30] we have $$\mathcal{A} \otimes \mathcal{B} = \mathcal{A} \otimes \mathcal{L}(\Re) \cap \mathcal{L}(\mathfrak{H}) \otimes \mathcal{B},$$ and $$\mathcal{A}_{1} \otimes \mathcal{B}_{1} = \mathcal{A}_{1} \otimes \mathcal{L}(\Re) \cap \mathcal{L}(\Re) \otimes \mathcal{B}_{1}.$$ These equalities (11)-(14) together imply $$(\mathcal{A} \otimes \mathcal{B}) \cap (\mathcal{A}_{1} \otimes \mathcal{B}_{1})$$ $$= \mathcal{A} \otimes \mathcal{L}(\Re) \cap \mathcal{L}(\S) \otimes \mathcal{B} \cap \mathcal{A}_{1} \otimes \mathcal{L}(\Re) \cap \mathcal{L}(\S) \otimes \mathcal{B}_{1}$$ $$= (\mathcal{A} \cap \mathcal{A}_{1}) \otimes \mathcal{L}(\Re) \cap \mathcal{L}(\S) \otimes (\mathcal{B} \cap \mathcal{B}_{1})$$ $$= (\mathcal{A} \cap \mathcal{A}_{1}) \otimes (\mathcal{B} \cap \mathcal{B}_{1}),$$ which is the desired. The following lemma is due to Powers [3; Lemma 3.3]. For the sake of completeness, we shall list here a proof. Lemma 2. Let \mathcal{A} be a finite factor, and \mathcal{B} and \mathcal{C} I_n -subfactors of \mathcal{A} , then there exists a unitary operator U in \mathcal{A} such that $U\mathcal{B}U^*=\mathcal{C}$. **Proof.** Let ϕ be the normalized trace of \mathcal{A} . Since \mathcal{B} (resp. \mathcal{C}) is I_n -factor, there exists a system of matrix units $$\{W_{ij}; i, j=1, 2, \dots, n\} \text{ (resp.} \{V_{ij}; i, j=1, 2, \dots, n\})$$ which spans \mathcal{B} (resp. \mathcal{C}). Since $$I = \sum_{i=1}^{n} W_{ii}$$ and $I = \sum_{i=1}^{n} V_{ii}$, we have (15) $$1 = \sum_{i=1}^{n} \phi(W_{ii})$$ and $1 = \sum_{i=1}^{n} \phi(V_{ii})$. Since the matrix units satisfy $$W_{ii} = W_{1i}^* W_{1i}$$ and $W_{11} = W_{1i} W_{1i}^*$ (resp. $V_{ii} = V_{1i}^* V_{1i}$ and $V_{11} = V_{1i} V_{1i}^*$), W_{ii} (resp. V_{ii}) is equivalent to W_{ii} (resp. V_{ii}) with respect to \mathcal{A} Therefore, by (15), we have $$\phi(W_{11}) = \frac{1}{n} = \phi(V_{11}).$$ This implies that W_{11} is equivalent to V_{11} , and that there is a partially isometric operator V in $\mathcal A$ such that $$W_{11} = V^* V$$ and $V_{11} = V V^*$. Let us define $$U = \sum_{i=1}^{n} V_{i1} V W_{1i}$$. Then it is easy to compute that U is a unitary operator in \mathcal{A} and $UW_{ij}U^*=V_{ij}$ for $i,j=1,2,\cdots,n$. This proves the lemma. Lemma 3. Let \mathcal{A} and \mathcal{B} be isomorphic finite factors. If \mathcal{A}_1 (resp. \mathcal{B}_1) is a I_n -subfactor of \mathcal{A} (resp. \mathcal{B}), then the relative commutant $\mathcal{A}_1^c = \mathcal{A} \cap \mathcal{A}_1'$ is isomorphic to $\mathcal{B}_1^c = \mathcal{B} \cap \mathcal{B}_1'$. **Proof.** Let \mathscr{O} be the isomorphism of \mathscr{A} onto \mathscr{B} . Write $\mathscr{B}_2 = \mathscr{O}(\mathscr{A}_1)$. Then \mathscr{B}_1 and \mathscr{B}_2 are I_n -subfactors of \mathscr{B} . By Lemma 2, there exists a unitary operator U in \mathscr{B} such that $U\mathscr{B}_1U^* = \mathscr{B}_2$. Hence \mathscr{B}_1^c is isomorphic to \mathscr{B}_2^c . On the other hand, \mathscr{A}_1^c is isomorphic to \mathscr{B}_2^c . Therefore \mathscr{A}_1^c is isomorphic to \mathscr{B}_2^c . The following theorem may shed light on the notion of Maharam subalgebras: Theorem 2. Let \mathcal{A} be a II_1 -factor acting on a Hilbert space \mathfrak{D} and \mathcal{B} a I_n -subfactor of \mathcal{A} , then \mathcal{B} is a Maharam subfactor of \mathcal{A} . Proof. By (ii), it is sufficient to show that \mathcal{B} is a Maharam subfactor of the hyperfinite factor since a I_n -subfactor in a II_1 -factor is contained in a hyperfinite subfactor. Hence it is sufficient to assume that \mathcal{A} itself is hyperfinite. Then \mathcal{A} is isomorphic to $\mathcal{A}\otimes\mathcal{B}$. The relative commutant of $C_{\mathfrak{D}}\otimes\mathcal{B}$ in $\mathcal{A}\otimes\mathcal{B}$ is $\mathcal{A}\otimes\mathcal{C}_{\mathfrak{D}}$ by Lemma 1, and $\mathcal{B}^c = \mathcal{B}' \cap \mathcal{A}$ is a II_1 -factor by Lemma 3. Now, the theorem is a consequence of Theorem 1. Without appealing the hyperfinite subfactor, the another proof of the theorem is also possible based on [4; Lemma 4]. The class \mathfrak{M} of all Maharam subfactors of a II_1 -factor contains all subfactors of type I by Theorem 2. However, the class \mathcal{M} is wider than the class of all of all subfactors of type I. This is a consequence of the following Theorem 3. In a II_1 -factor \mathcal{A} , there exists a Maharam II_1 -subfactor \mathcal{B} of \mathcal{A} . **Proof.** By (ii), we can assume, as in the proof of Theorem 2, \mathcal{A} is hyperfinite. It is well-known that \mathcal{A} is isomorphic to $\mathcal{A} \otimes \mathcal{A}$. Applying Lemma 1, we have a II_1 -subfactor \mathcal{B} of \mathcal{A} such that $\mathcal{A} \cap \mathcal{B}'$ is a II_1 -factor. By Theorem 1, \mathcal{B} is a Maharam subfactor which is also of type II. The existence of a non Maharam proper subfactor of a certain II_1 -factor will be discussed on another occasion. ## References - [1] J. Dixmier: Les algèbres d'opérateurs dans l'espace hilbertien. Gauthier-Villars, Paris (1957). - [2] H. A. Dye: On groups of measure preserving transformations. I. Amer. J. Math., 81, 119-159 (1959). - [3] R. Powers: Isomorphic classification of type III factors, an unpublished manuscript distributed at Baton Rouge Conference. March (1967). - [4] Y. Misonou: On divisors of factors. Tohoku Math. J., 8, 63-69 (1956). - [5] H. Umegaki: Conditional expectation in an operator algebra. Tohoku Math. J., 6, 177-181 (1954).