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1. Introduction. Consider the equation of evolution in L(G)
1 du/dt Au, t > O,

where G is a domain in R. We assume that A is an infinitesimal
generator of holomorphic semi-groups S(t) with the domain D(A)
of A C’(G), and that A-Ai’-i aij(x)2(D/3xix +--1 a(x)3q/3x
+a(x)(=A) for e C’(G) where the coefficients satisfy the follow-
ing conditions" a(x) are functions of class C and with second deriv-
atives locally HSlder continuous, i.e., a(x) e Co (G)(0 h 1), a(x)
are of C, and a(x) of Co(G); the matrix {a.(x)} is positive definite
everywhere in G. The purpose of this note is to show the following
theorems.

Theorem 1. For any f e L(G), there exists a function u(x, t)
in .oo+rG(O, oo) such that for any fixed t>O u(x, t)-S(t)f(x)
after a correction of a null set of the space R. Moreover, for
any fixed x in G, u(x, t) is analytic in t.

Theorem 2. Let f be in L(G). If for a fixed logO, S(to)f(x)-O
for almost every x in some nonempty open subset U of G, then
S(t)f vanishes identically in G (0, oo).

The regularity of semi-group solutions of the diffusion equations
was studied by K. Yosida [1 H. Komatsu [2, and others, under
somewhat strong conditions on the coefficients. The unique continua-
lion property of solutions of the diffusion equations was studied by
ItS-Yamabe [3, Mizohata [4, Yosida [1, Shirota [5, and others.
The proof of Theorems 1 and 2, shown in the next section, is sug-
gested by K. Yosida [1. We can extend our results in some direc-
lions:

1. Instead of Eq. (1), we can consider the equation du/dt
A(t)u, where A(t) are generators of holomorphic semi-groups satisfy-

ing certain conditions.
2. The condition that the restriction of A on CT(G) is an

elliptic operator of second order can be weakened to the following
one; It is an elliptic operator of order 2 m with smooth coefficients
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such that an operator A+(/+/7])-/ on G R has a
unique continuation property.

2. Proof of Theorem 1. Since S(t) is a holomorphic semi-
group, S(t)f admits a holomorphic extension S(z)f given by strongly
convergent Taylor series"
2 S(z)f= -,=o(Z- t)S()(t)f/m!

for z in the sector ={z; argzl <O},S()(t)f being the m-th
derivative in t of S(t)f. Furthermore,
3 S()(t)f e D(A), and AS()(t)f= S(+)(t)f, t > O, m=O,, ....

Since (S(z)f, S(z)f) is continuous for z in , setting v(x,,) S($ + i)f,
we see that v(x, , ) is square-integrable over any compact set in
GC, where (., .) is the scalar product of L(G)and C={(,);
+i e }. We shall show that v(x, , )satisfies the equation
4 (v[/S8 +/+/]+A’)()= 0

for any in C:(Z), where Z=Gx C and (., .)( is the scalar prod-
uct of L(Z). For any in C(G), (v(., , ), ) is a harmonic func-
tion of 8 and T, since (S(z)f, ) is holomorphic in X. Hence,
5 (v,/+/]) 0

for any in C(G) and any in C(C). On the other hand, by

(2) and (3), S(+i)f satisfies the equation 3(S( + i)f, ) (AS(

+i)f, ) for any (, ) in C and any in C(G). Hence,
6 (v, (/$+A’)e)()=0

for in C(G) and in C(C), where A’ is the formal adjoint of
A. Since the totality of finite sums with e C(G) and

e CT(C), is dense in CT(Z) in the topology of (Z) (see L. Schwartz
[6), we have, by (5) and (6),
7 (v,

and
s ) (v, [/+A’):()=0

for any in CT(Z). Hence, by adding 7 to 8 ), we see that Eq.
4 holds. Since /3+/+A-/ is an elliptic differential

operator, applying the theorem on the interior regularity for weak
solutions of elliptic equations (see F. Browder [7 p. 129),we see, by
(4) and (8), that, after a correction of a null set of the product
space RR, v(x, , ) is equal to a function v*(x, , )e C(Z)
which satisfies the equation
9 v*(x, , )/=Av*(x, , ) in Z.

Furthermore, we have, by (7),
(10) [3/3+/ v*(x, $, )=0 in Z.
Hence, for any fixed x in G, v*(x, , ) is an analytic function of

and . Hence, we see that v*(x, t, 0) is a function in C(G
(0, )) which satisfies Eq. (9) in G (0, ), and that for any fixed
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x in G, v*(x, t, 0) is analytic in t. Since for in C(G), (v(., , ]), )
is continuous in and 7], (v(., $, 7]), )=(v*(., $, ]), ) for any (, )
in C. Hence, for any fixed t>O, S(t)f(x) is equal to a function
v*(x, t, 0), after a correction on a null set of the space R. Thus,
Theorem 1 is proved.

3. Proot of Theorem 2. We first show that
(11) (S()(to)f, )=0 for in C(U) and n=0, 1, 2, ....
The assumption of Theorem 2 implies that (11) holds for n=0.
Suppose that (S()(to)f, )=0 for in C(U). Then we have, by
( 3 ), (S(+)(to)f, ) (AS()(to)f, ) (S()(to)f, A’ ) 0, showing that
(S(+)(to)f, )=0, for in C(U). Thus we have (11). Since S(z)f
is holomorphic in X, setting v(x, , )=S(+i)f, we have, by 2
and (11), v(x, , 7])=0 for almost every (x, , z]) in U C, so that
v*(x, , 7])= 0 for any (x, , 7]) in U C, where v* is defined in the
proof of Theorem 1. Since v*(x, , 7]) satisfies Eq. 4 ), applying the
unique continuation theorem for solutions of elliptic differential
equations of second order, we have v*(x,,)--O in Z. Hence,
u(x, t)=v*(x, t, 0)=0 for any (x, t) in G(0, c). Thus Theorem 2
is proved.
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