95 A Note on the Analyticity in Time and the Unique Continuation Property for Solutions of Diffusion Equations

By Kyûya Masuda

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., June 12, 1967)

1. Introduction. Consider the equation of evolution in $L^2(G)$ (1) $du/dt = Au, \quad t > 0,$

where G is a domain in \mathbb{R}^n . We assume that A is an infinitesimal generator of holomorphic semi-groups S(t) with the domain D(A) of $A \supset C_0^{\infty}(G)$, and that $A\varphi = \sum_{i,j=1}^n a_{ij}(x)\partial^2 \varphi/\partial x_i \partial x_j + \sum_{j=1}^n a_j(x)\partial \varphi/\partial x_j + a(x)\varphi(\equiv A\varphi)$ for $\varphi \in C_0^{\infty}(G)$ where the coefficients satisfy the following conditions: $a_{ij}(x)$ are functions of class C^2 and with second derivatives locally Hölder continuous, i.e., $a_{ij}(x) \in C_{loc}^{2+h}(G)(0 < h < 1), a_j(x)$ are of C^1 , and a(x) of $C_{loc}^h(G)$; the matrix $\{a_{ij}(x)\}$ is positive definite everywhere in G. The purpose of this note is to show the following theorems.

Theorem 1. For any $f \in L^2(G)$, there exists a function u(x, t)in $C_{los}^{2+h}(G \times (0, \infty))$ such that for any fixed t > 0 u(x, t) = S(t)f(x)after a correction of a null set of the space \mathbb{R}^n . Moreover, for any fixed x in G, u(x, t) is analytic in t.

Theorem 2. Let f be in $L^2(G)$. If for a fixed $t_0 > 0$, $S(t_0)f(x) = 0$ for almost every x in some nonempty open subset U of G, then S(t)f vanishes identically in $G \times (0, \infty)$.

The regularity of semi-group solutions of the diffusion equations was studied by K. Yosida [1] H. Komatsu [2], and others, under somewhat strong conditions on the coefficients. The unique continuation property of solutions of the diffusion equations was studied by Itô-Yamabe [3], Mizohata [4], Yosida [1], Shirota [5], and others. The proof of Theorems 1 and 2, shown in the next section, is suggested by K. Yosida [1]. We can extend our results in some directions:

1°. Instead of Eq. (1), we can consider the equation du/dt = A(t)u, where A(t) are generators of holomorphic semi-groups satisfying certain conditions.

2°. The condition that the restriction of A on $C_0^{\infty}(G)$ is an elliptic operator of second order can be weakened to the following one; It is an elliptic operator of order 2 m with smooth coefficients

No. 6]

such that an operator $A + (\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2)^m - \partial/\partial\xi$ on $G \times R^2$ has a unique continuation property.

2. Proof of Theorem 1. Since S(t) is a holomorphic semigroup, S(t)f admits a holomorphic extension S(z)f given by strongly convergent Taylor series:

(2) $S(z)f = \sum_{m=0}^{\infty} (z-t)^m S^{(m)}(t)f/m$

for z in the sector $\sum = \{z; | \arg z | < \theta\}$, $S^{(m)}(t)f$ being the *m*-th derivative in t of S(t)f. Furthermore,

(3) $S^{(m)}(t)f \in D(A)$, and $AS^{(m)}(t)f = S^{(m+1)}(t)f$, $t > 0, m = 0, 1, \cdots$.

Since (S(z)f, S(z)f) is continuous for z in \sum , setting $v(x,\xi,\eta) = S(\xi + i\eta)f$, we see that $v(x, \xi, \eta)$ is square-integrable over any compact set in $G \times C$, where (\cdot, \cdot) is the scalar product of $L^2(G)$ and $C = \{(\xi, \eta); \xi + i\eta \in \Sigma\}$. We shall show that $v(x, \xi, \eta)$ satisfies the equation (4) $(v [\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \partial/\partial\xi] \mathcal{O} + A'\mathcal{O})_{L^2(Z)} = 0$

$$(5) \qquad (v, \left[\frac{\partial^2}{\partial\xi^2} + \frac{\partial^2}{\partial\eta^2}\right] \varphi \psi)_{L^2(Z)} = 0$$

for any φ in $C_0^{\infty}(G)$ and any ψ in $C_0^{\infty}(C)$. On the other hand, by (2) and (3), $S(\xi + i\eta)f$ satisfies the equation $\frac{\partial(S(\xi + i\eta)f, \varphi)}{\partial \xi} = (AS(\xi + i\eta)f)$

(6) + $i\eta$) f, φ) for any (ξ, η) in C and any φ in $C_0^{\infty}(G)$. Hence, (6) $(v, (\partial/\partial\xi + A')\varphi\psi)_{L^2(Z)} = 0$

for φ in $C_0^{\infty}(G)$ and ψ in $C_0^{\infty}(C)$, where A' is the formal adjoint of A. Since the totality of finite sums $\sum \varphi_j \psi_j$ with $\varphi_j \in C_0^{\infty}(G)$ and $\psi_j \in C_0^{\infty}(C)$, is dense in $C_0^{\infty}(Z)$ in the topology of $\mathcal{D}(Z)$ (see L. Schwartz [6]), we have, by (5) and (6),

(7) $(v, \left[\frac{\partial^2}{\partial\xi^2} + \frac{\partial^2}{\partial\eta^2}\right] \Phi_{L^2(Z)} = 0$

and (8)

$$(v, \left[\partial / \partial \hat{arsigma} \! + \! A'
ight] artheta)_{L^2(oldsymbol{Z})} \! = \! 0$$

(9) $\partial v^*(x, \xi, \eta)/\partial \xi = Av^*(x, \xi, \eta)$ in Z. Furthermore, we have, by (7),

(10) $\left[\frac{\partial^2}{\partial\xi^2} + \frac{\partial^2}{\partial\eta^2} \right] v^*(x, \xi, \eta) = 0 \text{ in } Z.$

Hence, for any fixed x in G, $v^*(x, \xi, \eta)$ is an analytic function of ξ and η . Hence, we see that $v^*(x, t, 0)$ is a function in $C_{loc}^{2+h}(G \times (0, \infty))$ which satisfies Eq. (9) in $G \times (0, \infty)$, and that for any fixed

x in G, $v^*(x, t, 0)$ is analytic in t. Since for φ in $C_0^{\infty}(G)$, $(v(\cdot, \xi, \eta), \varphi)$ is continuous in ξ and η , $(v(\cdot, \xi, \eta), \varphi) = (v^*(\cdot, \xi, \eta), \varphi)$ for any (ξ, η) in C. Hence, for any fixed t > 0, S(t)f(x) is equal to a function $v^*(x, t, 0)$, after a correction on a null set of the space R^* . Thus, Theorem 1 is proved.

3. Proof of Theorem 2. We first show that

(11) $(S^{(n)}(t_0)f, \varphi) = 0$ for φ in $C_0^{\infty}(U)$ and $n = 0, 1, 2, \cdots$. The assumption of Theorem 2 implies that (11) holds for n = 0. Suppose that $(S^{(k)}(t_0)f, \varphi) = 0$ for φ in $C_0^{\infty}(U)$. Then we have, by (3), $(S^{(k+1)}(t_0)f, \varphi) = (AS^{(k)}(t_0)f, \varphi) = (S^{(k)}(t_0)f, A'\varphi) = 0$, showing that $(S^{(k+1)}(t_0)f, \varphi) = 0$, for φ in $C_0^{\infty}(U)$. Thus we have (11). Since S(z)fis holomorphic in Σ , setting $v(x, \xi, \eta) = S(\xi + i\eta)f$, we have, by (2) and (11), $v(x, \xi, \eta) = 0$ for almost every (x, ξ, η) in $U \times C$, so that $v^*(x, \xi, \eta) = 0$ for any (x, ξ, η) in $U \times C$, where v^* is defined in the proof of Theorem 1. Since $v^*(x, \xi, \eta)$ satisfies Eq. (4), applying the unique continuation theorem for solutions of elliptic differential equations of second order, we have $v^*(x, \xi, \eta) = 0$ in Z. Hence, $u(x, t) = v^*(x, t, 0) = 0$ for any (x, t) in $G \times (0, \infty)$. Thus Theorem 2 is proved.

References

- [1] Yosida, K.: An abstract analyticity in time for solutions of a diffusion equation. Proc. Japan Acad., 35, 109-113 (1959).
- [2] Komatsu, H.: A characterization of real analytic functions. Proc. Japan Acad., **36**, 90-93 (1960).
- [3] Ito, S., and Yamabe, H.: A Unique continuation theorem for solutions of a parabolic differential equation. J. Math. Soc. Japan, **10**, 314-321 (1958).
- [4] Mizohata, S.: Unicité du prolongement des solutions pour quelques opérateurs differentiels paraboliques. Mém. Coll. Sci. Univ. Kyoto, Ser. A, 31, 219-239 (1958).
- [5] Shirota, T.: A unique continuation theorem of a parabolic differential equation. Proc. Japan Acad., 35, 455-460 (1959).
- [6] Schwartz, L.: Théorie des Distributions, vol. 1. Hermann, Paris (1950).
- [7] Browder, F.: Functional analysis and partial differential equations. II. Math. Ann., **145**, 81-226 (1962).