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1. Introduction. In this note1) we are concerned with the
SchrSdinger operator z// q(x) acting in the Hilbert space (C) L(E),
where E denotes the 3-dimensional Euclidean space. We consider
the case where q(x) is a complex-valued potential function assumed
to satisfy the following conditions:

(A) q(x)e L(E), is locally HSlder continuous except for a finite
number of singularities and behaves like O([ x

The eigenfunction expansion theorem associated with -l+q(x)
was already proved, based on a work of Povzner _7, by Ikebe
under the same assumptions on q(x) when it is real-valued. Our
purpose is to extend his results to the case of complex-valued
potentials. We use the methods developed by J. Schwartz 8, Kato
3, and Kuroda 4, 5, and follow almost the same line of the
proof given by Ikebe. In our case, however, the existence of a
uniformly bounded spectral resolution E(e) of -2 /q(x) is not proved
if we choose real intervals e arbitrarily. So our results on the
expansion problem will become rather of a local character.

The expansion formula can be applied to solve the scattering
inverse problem formulated by Faddeev in 2. His result is the
following: A real-valued potential function q(x) can be determined
uniquely, under the assumptions that q(x) C(E) and
(A1) q(x)=O(I x ]-3-)(5>0) as Ix
from the assymptotic conditions for kl--c of the function
t(n, ; kl) having a physical meaning.) We shall extend this
result also to the case of complex-valued potential assumed to satisfy
(A) in addition to (A). In our proof it is not necessary to assume
q(x) e C I(E3).

:2. Spectral resolutions. We consider -2+q(x) to be defined
on C:(E). We denote by L0 the selfadjoint extension of -z/with

1) The detailed proof of the following results will be given in a forthcoming
paper.

2) t?_.l gives the so-called differential closs section of scattering for the
particle incident in the direction , and scattered in the direction n. For the
definition of t+(n, ,;Ik I) see (25) in 4.
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the domain (Lo)-. and by V the multiplicative operator given
by q(x). Put
1 L-Lo/ V, (L)-(Lo).

Then L defines a unique closed extension of-J+q(x). The adjoint
operator L* of L is given by L*-Lo+ V*, (L*)-(L), where V*
represents the operator of multiplication by the complex conjugate
q(x) of q(x). The essential spectrum of L is composed of the value
/-0 and the real interval (0, c) which is the continuous spectrum
of L, and a value / 0, c) is a discrete eigenvalue of L if and
only if fi is a discrete eigenvalue of L* (Cf. 6; Theorem 1.1).

We denote by R0({), R({), and R*({) the resolvents of L0, L, and
L*, respectively. In virtue of (1) we have
2 R() Ro() Ro() VR(), R()* R*(),

where by R()* we denote the adjoint operator of R({). Remark
that R0({) is the integral operator generated by the kernel
(4u x-y t)- exp {il/ x-y l}, where by v/ is meant the branch
of the square root of with Iml/ >0. It is natural to define
the spectral resolutions E(e) of L, for a real interval e, by the
formula

3 ) (E(e)f, g)-. 1 liml ({R(I + ie)-R(-ie)}f, g)dl ) f, g 32.
27i o

We write q(x)-a(x)b(x), where a(x) is chosen as one of the
following two functions:
(4) a(x)- q(x) [/ or a(x)-(l + x
For either chosen a(x), we denote by A and B the multiplicative
operators given by a(x) and b(x), respectively. Then V=AB-BA.
Now we can write

5 (E(e)f, g)-(Eo(e)f, g)- 1 lim f(AR(/i)f, B*Ro(+i)*g)d
2i o

+ i lira I (AR(-is)f, B*Ro(-ie)*g)d
27i o

where Eo(e) denotes the resolution of the identity of L0.
Let Q0()(Im :>0) be the integral operator generated by

( 6 Qo(x, y; )_a(x)’" exp {ilx-y I}b(y)

It is known that, for either chosen a(x), Qo() is the operator of
Hilbert-Schmidt type even ior real (see [5" 7). Remark that
7 AR()- I+Qo()-ARo(), -.

whenever the bounded inverse [I+Qo()- exists.
We can now make use of the Fredholm theory.

3) (f, g) is used to denote the inner product of f and g in L(Es). The norm
of f is denoted by IIf ]; i.e., If 12=(f,f).
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Lemma 1. The operator I+ Qo() has a bounded inverse if and
only if the SchrYdinger equation
(8) [-A+q(x)-
has no non-trivial solutions ?(x,) satisfying the Sommerfeld
radiation condition at infinity"

9 (x )- O(1 x [-), lim i 0.

We call a value for which equation (8) has non-trivial solutions
satisfying (9) a singular point of Q0(x) and denote by X the set of
all singular points of Q0(). If Imx>0, then xe X if and only if
/-k is a discrete eigenvalue of L.

The following lemma will play later an important role.
Lemma 22 Qo(:) vanishes as Il--,c; i.e., for given any

0 there exists a :o-:o()0 such that
(10)

This proves the following"
Lemma 3. X forms a bounded closed set in Im 0. EI+ Q0()-depends continuously on except for eX in the sense of the

operator norm. Moreover, [[ EI+Q0()-][ is bounded in the com-
plement in Im :>0 of a neighborhood of

We use also the following lemma due to Kato 3.
Lemma 4. Let q(x) e L/(E) and let a(x)-[ q(x) [. Then

(11) I:{ AR0(2 / i)fll2+ ii ARo(2- i)fl 2}d2

_
C II f!

where C is a positive constant independent of 0.
Now let e-(a,/9) be a (possibly infinite) subinterval of (0, oo)

such that in neighborhoods of (-$/-, -1/a) and (l/E, $//9) there
exist no singular points of Q0(). The existence of such an e is
guaranteed by Lemma 3. We return to formula (5). Put
a(x)-I q(x) . Then, since b(x)-a(x).{q(x)/I q(x) I}, we have
]lB*Ro(2+__ie)*gll_llARo(i)gll. Taking (7) and Lemma 3 into
account, we have further II AR( +__ie)fll <_const II ARo(+i)fll. Ap-
plying Lemma 4, we get)

I(AR(2+_i)f, llfll’ll gll,B*Ro(2+ie)*g) d2C
which proves simultaneously the existence and the boundedness of
E(e).

Theorem 1.6) There exists, for any e-(o, t9) given as above,

4) For the proof of this lemma we approximate q(x) by a function in C(E3).
A similar estimate for q(x)C(E3),is proved in the Lemma of E2:I.

5) It is clear that q(x)Lal(E) if it satisfies condition (A).
6) Cf. J. Schwartz l-8_-1. He obtained results in which q(x) L A L was assumed

together with the existence of an e-(a, ).
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a bounded operator E(e) satisfying (3), which determines the
"spectral resolution" of L:
(12) E(e)L_LE(e),
(13) E(e)E(e)- E(e)E(e)-E(e e).

:. Iigenfunction expansions. In this section we put a(x)
=(1+1 x I)-(+). Then, for each in the resolvent set of L, we
see from (7) that AR() defines an integral operator of Hilbert-
Schmidt type. We denote the kernel of AR() by T(x, y; ), -.
Let t(x,k;)-(27)- T(x, y;)e-’dy, where k denotes a 3-di-

E

mensional vector variable. Then we have

(4) t(x, ; )-(I -)-(x, ; ), k I-, ,
where (., k; )e 22 is a solution of the equation
(15) (x, k; )+ [Qo()(x, k; )-(27)-a(x)e’.

Lemma 5. (x, k; ) is bounded and continuous in E E Pz,
where pz is the complement in Im ___0 of a neighborhood of
There exists a positive integer no such that for any integer nno
(16) [V0()@_(x, k; )1_< const (1 +Ix I)-a(x)
where II II is bounded in k E and

It follows in virtue of (2) that R() is an integral operator of
Carleman type generated by the kernel

(17) R(x y; )- exp {i x-y I} I exp {i x-z I} b(z)T(z, y; )dz.
47Ix--Yl

Letting r(x, k; )-(2)-I R(x, y; )e-’dy, we have

(lS) r(x, k; )-(2)-(I k -)-(x, k; ),
where

(19) (x, k; )-e’- I exp {i Ix-z ]} b(z)(z, k" )dz.
4lx-zl

Put
(2o)
Then (x, k) turns out to be a unique solution of the Lippmann-
Schwinger equation

(21) +/-(x k)- e’- f exp i k I" x- z I}.q(z)+/-(z, k)dz.

A similar function *(x, k) corresponding to L* is also obtained as
a unique solution of (21) with q(x) replaced by q(x), if __+lk]eX*
which is composed of values -# corresponding to all e X.

Following a way similar to Ikebe’s (see [1, . 9) we get
Lemma 6. Let e= (tr, ) be a (possibly infinite) subinterval of

(0, c) such as given in the previous section and let f, g e C:(E).
Then
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(22)

where

(E(e)f, g)- f ,/-li
f_+*(k)- (27)-31 *(y,k)f(y)dy,

E

(k)- (27)-3/I+/-(x, k)g(x)dx.

In the case of a real valued potential, as was proved in [1,
relation (22) is extended to f, g e taking account of E(e) being
selfadjoint. In our case however we must directly prove this.
Namely

Lemma 7. The mappings f and g are bounded maps
of =L(E) into L(K), where K denotes the domain {keE;

k }.
Sketch of proof. Let us consider the integral

X(L g)-lim ({Ro(+ie)-Ro(-ie)fi V*R(ie)*g)d
o 2i

As we proved the boundedness of E(e), it follows from Lemmas 3
and 4 that this defines a bounded bi-linear form on L(E). Let j0(k)
denote the Fourier image of f(x)eL(E). Then the Plancherel
theorem shows that

X:(f, g)-lim i f 9?(k)+/-(k’ )dk;
0 27i

2is(k,
( k )+ e

V*R(2 ie)*g(k)d2"

We choose g(x) from C$(E). Then

[ V*R(2ie)*g(k)- g(x)dx R(x, y" 2ie)b(y)a(y)e’dy.
E E

Noting the relation)

R()B Ro()B[I- AR()B Ro()B[I+Qo( )-
and applying the Lebesgue theorem, we get finally

(f, a)-Z2(f, )- ]o()(k)dk,) ]o() e c:(g).

Since CT(K) is dense in L(K), this proves the boundedness of the
mapping g. The boundedness of ff is also proved by a
similar method, q.e.d.

7) In fact,

I-AR()B=I-[I+Qo(v/ )]-ARo()B
=I-[I+Qo(v/ )]-[I+ARo()B]+[I+Qo(v/)]-[I+Qo(V/-)] -1

8) If we define a bounded operator W+(e)=Eo(e)-X++_(e), where (X+(e)], g)
=X(f, g), then we can show that W+(e) is the so-called wave operator establishing
the similarity between L0 and L (Cf. [6]" 2).
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Now we have the following expansion theorem.
Theorem 2. For any fe E(e)(C), we have

(23) f(x) (27)- +/-(x, k)f+/-*(k)dk;
K

f*(k) (27)-3/2 f 2(y,kf(y)dy.
E

4. The scatterin inverse problem. In virtue of Lemma 3,
we see that the distorted plane wave (x, k) exists for sufficiently
large ]k ]. Assume now the additional condition (A)on q(x). Then
the following assymptotic form of hlds for large x] (see [2).

(24) (x, k)=e’+O(n,

(25) (n, ,;]k )--- F(y,

where n=x/ x and =k/ k . Let us consider (25) for large
Making use of estimate (10), we can obtain that

(26) O(n " k )- 1 q(y)e.(_).Vdy+o(1),
4 E

where by o(1) is meant the term which vanishes as]k.
Now for an arbitrary vector m we can choose ]k ], n, and so

that m= ]k ](n-). We let k changing n and and preserving
the relation m=]k(n-). Then the limit of the right hand of
(26) exists and

1 q(y)ee.dy.(27) lim 0(,; )--Hence the following theorem holds.
Theorem . If a potential q(x) is assumed to satisfy conditions

(A) and (A), then it is determined uniquely from the assymptotic
behavior for k] of the function O(n,
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