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154. On Some Generalised Solution of a Nonlinear
First Order Hyperbolic Partial Differential Equation

By Takaaki NISHIDA
(Comm. by Kinjir6 KuNc(I, .J.A., Oct. 12, 1967)

We consider the following Cauchy problem in t_ 0, oo < < + oo.

1 ) 3__U_u + f(u) h(u)
t

( 2 ) u(0, x)=
where f(u) e C, h(u) e C and Uo(X) e L.
First we assume that f(u)>__>O for Vu.

Oleinik [_1 proved the uniqueness and existence theorem of the
generalised solution for Cauchy problem u+f(t,x,u)-g(t,x,u)
with (2) under the conditionf const. >0 and ]g(t, x, u) const.
Here we consider the case that g(t, x, u) const, is not satisfied
and see that the uniqueness and existence theorem is valid for some
case under the following definition of the generalised solution.

We call u(t, x) the generalised solution of (1)(2), which satisfies
the following:

i) u(t, x) is a measurable and locally bounded function.
ii) for arbitrary continuously differentiable function (t,x)

with compact support

L 3t ox
tO

iii)

( 4 u(t, < K(t,

where K(t, x, x) is continuous in t > 0, c <x, x< +.
1. Uniqueness Theorem. We have the following uniqueness

theorem.
Theorem. The generalised solution u(t, x) of (1)(2) is unique

under the following estimate.
-(t)u(t, x)a(t, x) for tO, xO,

( 5 a(t, x) u(t, x) (t) for t O, x O,
where (t), a(t, x) are nonnegative and continuous in {t0}, {t0,
x0} respectively.

This can be proved by a slight modification of the argument in
th. 1. Following it, let us assume that there exist two generalised
solutions u(t, x) u(t, x) satisfying (5). It is sufficient to see that
for any F(t, x)e C such that there exist T>a>0, X>0 (may depend
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on F) and F=-0 for t>__T, 0,t< or xI>__X, the following is true

( 6 ) f fF(t, x)(u(t, x)-u.(t, x))dt dx=0.
t>0

For the proof of (6) we consider the dual linear differential equation

7 ) 3v + (t, x) 3v
t +(t, x)v F(t, x),

where (t, x)- f(u)-f(u) k(t, x)- h(u)-h(u) In order to have

a continuously differentiable solution v(t, x) we take the following
averaged equation instead of (7).

v + x) v8 ) (t, +k(t, x)v-F(t, x),

where , k, are averaged functions of , k and k,-0 for 0<t<p,
therefore h--0, p--0 include --, k,-k.

We take as the boundary condition for v(t, x) the following:

(9) v(T, x)-O for -oox +oo,
v(t, _+ oo) 0 for 0< t< T,

where it is sufficient for the latter to take v(t, +_(X+CT))-O for
each F(t, x), where C-max f(t).

0r

Now we have

-C<_(t, x)<_A(x) for x>__0, 0_<t<:T,
-A(-x)<__O(t, x)_C for xO, O<_t_T,
k(t, x)

_
const, for (t, x) e D,

where D- {(t, x) O< t < T, x <_X} and A(x) e C in [0, +oo).
Taking account of the explicit formula

x(s t x exp -k(r, x(t, x))dr ds,(10) v(t, x)- F(s,
to

where x(t, t, x) is the characteristics passing through the point
(t, x) i.e., the solution of dx/dt=(t, x) and IX(to, t, x)]>.X+CT
or to=T, and also the fact that F(t,x)-O for (t, x) e D{t >__a},
quite analogously to F_I], we have the following:

v(t, x) e C(O_t <_ T, oo <x +oo),
v(t, x) [_<const. (indep. of h, dep. on D and sup

const. (indep. of h) for (t, x) Da{t>_.}, p: fixed,

Variation v(t, x)const. (indep. of h and t) for p: fixed.
--<i<+

Thus using the definition (3) of the generalised solution, and
tending h, p to zero appropriately, then we have
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t0 v )vldt O.f i(u-u)[( )--x +(k dx-

2. Existence Theorem. Hereafter we assume that
h(u) <_ const. (u+ 1) for u0,

(12) h(u) const. (u+ 1) for u< 0 and there exist
u0-const, such that h(uo)-O.

For the initial value Uo(X) we assume
(i) Uo(X)-Uo
is some bounded measurable function with compact support.

Theorem. The generalised solution of Cauchy problem (1)(2),
which satisfies the estimate (5), exists for Og t + x +
under the assumptions (12) (13).

The proof is analogous to that of [2]. For the simplicity of the
argument we discuss the case that f(0)-0, h(0)-0 and Uo(X) is a
L-function with compact support.

The solution of the characteristic equation of (1)

(ia) dx f(u), du h(u)
dt dt

with the initial values x(0, )-, u(0, )-u0(), e (a, b) satisfies the
following

u(t.)

)-, orf(u) du(i5) h(u)
u0()
u(t,)-Uo() for h(u0())-0.

Because of the continuous differentiability of h(u) and the formula
(15) with f>0 we have

(16)
Ogu(t, )Uo()e- for u0()0,
Ou(t, )Uo()e-(-) for u0()<0.

Differentiation (14) with respect to gives
u(t, ) 3u(O, ) exp h(u(v ))dr

o(t, ) (o, ) +

___
) /((r, )) ex h((, ))gr

and so under the condition x(0, )/30, 3u(0, )/0 we have

(17.1) //_< ex oh((r, ))

In the ease that the initial is (0, s)-eonst,
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u(O, e)-u_/e(u+-u_) for 0e_<_l, u_<u+
the same is true:

(17.2) U3x u3e/-3x const.exp x

Now we approximate the initial condition Uo(X) with piecewise
constant functions u(0, x)(h> 0)"

1 (+)Uo()d for kh< x< (k + 1)h(18) u’(0, ,,
where u(0, x) 0 for x N0,
then we construct the generalised solution for the Cauchy problem
(1)(18) by means of the solution of the characteristics equation (14)
with the initial values
(19) x(0, )-, u(0, )-u(0, ),
where

e (kh, (k + 1)h), k- 0, _+ 1, __+ 2, ...,
and if u(0, kh-O) u(O, kh/ 0), then we supplement the initial
values
(20) x(O, e) kh, u(O, e) u’(O, kh O) + e(u(O, kh + O) u’(O, kh 0)),
for 0

_
e

_
1 and necessary k.

The method to construct the generalised solutions u(t, x) for the
Cauchy problem (1)(18) is analogous to that of [2, thus using the
formulae (16), (17) for u(t, x) we have the following

-C_u(t, x)ga(x) for x_0,
a(- x) <_ u(t, x) <_ C for x< 0,

u(t, x)-u(t, x) < K(t, x, x.),

where K(t, x, x) is continuous in t 0, c x, x. / c. On these
bases by the analogous argument in [2 we see that for VK: compact
subdomain in {t>__0, -cx +oo} u(t, x) is uniformly bounded and
compact in L(K), i.e.,

sup lug(t, x) l<_ const. (indep. of h),

Variation {u(t, x)}_< const. (indep. of h),
-Vxx t

for t, t:>va>0
(indep. of h, dep. on X and a).

By the way u(t, x) satisfies the following for any continuously
differentiable function (t, x) with compact support:

k t
t0

and considering that there exist a subsequence u(t, x) of u(t, x)such
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that u(t, x)--u(t, x)e L(loc)in L(loc), passing to the limit in (21)
along hj--O, then we have the following for the limit function u(t, x)

L 3t
.o

that is, u(, z) is the desired generalised solution for (1)(2), and also
the uniqueness of the generalised solution concludes that all sequence
u(t, x) converge to u(t, x) in L(loc).

Remark 1 For the equation u+ (u/2)- g(x)u, where g(x)
is any continuously differentiable function, we have an analogous
result to the above, if we take the above definition of the generalised
solution. (cf. [_2]).

2;. If we take the assumption Uo(X)e L instead of
Uo(X)-Uo e L ’(or Uo(X) e L and the set {x]h(uo(X)):/:0} is equivalent almost every-

where to some compact set), we can not generally expect that the
generalised solution of (1)(2) exists in t>_0 and is locally bounded in
t >__ 0, c < x< / c under the assumption (12).

3. If we take h(u)-u+(a>O, const.), then even for the case
Uo(X)eLD ’ we can not generally expect that the generalised
solution of (1)(2) exists and is locally bounded in t :>0, c <x< / c,
but the same existence theorem as the above is true under the
additional condition that if u is infinite, then

dv is infinite for finite values u0.
h(v)

(by virtue of (15)).
The writer wishes to express his sincere gratitude to Professor

M. Tada and Professor M. Yamaguti for valuable encouraging sug-
gestions and their interest in this note.
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