## 154. On Some Generalised Solution of a Nonlinear First Order Hyperbolic Partial Differential Equation

By Takaaki Nishida

(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1967)
We consider the following Cauchy problem in $t \geq 0,-\infty<x<+\infty$.

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=h(u) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(0, x)=u_{0}(x) \tag{2}
\end{equation*}
$$

where $f(u) \in C^{2}, h(u) \in C^{1}$ and $u_{0}(x) \in L^{\infty}$. First we assume that $f_{u u}(u) \geq \delta>0$ for $\forall u$.

Oleinik [1] proved the uniqueness and existence theorem of the generalised solution for Cauchy problem $u_{t}+f(t, x, u)_{x}=g(t, x, u)$ with (2) under the condition $f_{u x} \geq$ const. $>0$ and $\left|g_{u}(t, x, u)\right| \leq$ const. Here we consider the case that $\left|g_{u}(t, x, u)\right| \leq$ const. is not satisfied and see that the uniqueness and existence theorem is valid for some case under the following definition of the generalised solution.

We call $u(t, x)$ the generalised solution of (1)(2), which satisfies the following:
i) $u(t, x)$ is a measurable and locally bounded function.
ii) for arbitrary continuously differentiable function $\varphi(t, x)$ with compact support

$$
\begin{equation*}
\iiint_{i \geq 0}\left[u \frac{\partial \varphi}{\partial t}+f(u) \frac{\partial \varphi}{\partial x}+h(u) \varphi\right] d t d x+\int_{-\infty}^{+\infty} \varphi(0, x) u_{0}(x) d x=0 . \tag{3}
\end{equation*}
$$

iii)

$$
\begin{equation*}
\frac{u\left(t, x_{1}\right)-u\left(t, x_{2}\right)}{x_{1}-x_{2}}<K\left(t, x_{1}, x_{2}\right) \tag{4}
\end{equation*}
$$

where $K\left(t, x_{1}, x_{2}\right)$ is continuous in $t>0,-\infty<x_{1}, x_{2}<+\infty$.
§1. Uniqueness Theorem. We have the following uniqueness theorem.

Theorem. The generalised solution $u(t, x)$ of (1)(2) is unique under the following estimate.

$$
\begin{gather*}
-\beta(t) \leq u(t, x) \leq \alpha(t, x) \quad \text { for } \quad t \geq 0, \quad x \geq 0  \tag{5}\\
-\alpha(t,-x) \leq u(t, x) \leq \beta(t) \quad \text { for } \quad t \geq 0, \quad x \leq 0
\end{gather*}
$$

where $\beta(t), \alpha(t, x)$ are nonnegative and continuous in $\{t \geq 0\},\{t \geq 0$, $x \geq 0\}$ respectively.

This can be proved by a slight modification of the argument in [1] th. 1. Following it, let us assume that there exist two generalised solutions $u_{1}(t, x) u_{2}(t, x)$ satisfying (5). It is sufficient to see that for any $F(t, x) \in C^{1}$ such that there exist $T>\alpha>0, X>0$ (may depend
on $F$ ) and $F \equiv 0$ for $t \geq T, 0 \leq t \leq \alpha$ or $|x| \geq X$, the following is true

$$
\begin{equation*}
\iint_{t>0} F(t, x)\left(u_{1}(t, x)-u_{2}(t, x)\right) d t d x=0 \tag{6}
\end{equation*}
$$

For the proof of (6) we consider the dual linear differential equation

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\phi(t, x) \frac{\partial v}{\partial x}+\psi(t, x) v=F(t, x) \tag{7}
\end{equation*}
$$

where $\phi(t, x)=\frac{f\left(u_{1}\right)-f\left(u_{2}\right)}{u_{1}-u_{2}}, \psi(t, x)=\frac{h\left(u_{1}\right)-h\left(u_{2}\right)}{u_{1}-u_{2}}$. In order to have a continuously differentiable solution $v(t, x)$ we take the following averaged equation instead of (7).

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\phi_{h}(t, x) \frac{\partial v}{\partial x}+\psi_{h \rho}(t, x) v=F(t, x) \tag{8}
\end{equation*}
$$

where $\phi_{h}, \psi_{h \rho}$ are averaged functions of $\phi, \psi$ and $\psi_{h \rho}=0$ for $0 \leq t \leq \rho$, therefore $h \rightarrow 0, \rho \rightarrow 0$ include $\phi_{h} \rightarrow \phi, \psi_{h \rho} \rightarrow \psi$.

We take as the boundary condition for $v(t, x)$ the following:

$$
\begin{align*}
& v(T, x)=0 \quad \text { for } \quad-\infty<x<+\infty \\
& v(t, \pm \infty)=0 \quad \text { for } \quad 0 \leq t \leq T \tag{9}
\end{align*}
$$

where it is sufficient for the latter to take $v(t, \pm(X+C T))=0$ for each $F(t, x)$, where $C=\max _{0 \leq t \leq T} \beta(t)$.

Now we have

$$
\begin{array}{ll}
-C \leq \phi_{h}(t, x) \leq A(x) & \text { for } x \geq 0, \quad 0 \leq t \leq T \\
-A(-x) \leq \phi_{h}(t, x) \leq C & \text { for } \quad x<0, \quad 0 \leq t \leq T, \\
\left|\psi_{h \rho}(t, x)\right| \leq \text { const. } & \text { for } \quad(t, x) \in D
\end{array}
$$

where $D=\{(t, x) 0 \leq t \leq T,|x| \leq X\}$ and $A(x) \in C^{1}$ in $[0,+\infty)$.
Taking account of the explicit formula

$$
\begin{equation*}
v\left(t_{1}, x_{1}\right)=\int_{t_{0}}^{t_{1}} F\left(s, x\left(s, t_{1}, x_{1}\right)\left[\exp \int_{t_{1}}^{s}-\psi_{h \rho}\left(\tau, x\left(t_{1}, x_{1}\right)\right) d \tau\right] d s\right. \tag{10}
\end{equation*}
$$

where $x\left(t, t_{1}, x_{1}\right)$ is the characteristics passing through the point $\left(t_{1}, x_{1}\right)$ i.e., the solution of $d x / d t=\phi_{h}(t, x)$ and $\left|x\left(t_{0}, t_{1}, x_{1}\right)\right| \geq X+C T$ or $t_{0}=T$, and also the fact that $F(t, x)=0$ for $(t, x) \notin D_{\cap}\{t \geq \alpha\}$, quite analogously to [1], we have the following:

$$
v\left(t_{1}, x_{1}\right) \in C^{1}\left(0 \leq t_{1} \leq T,-\infty<x_{1}<+\infty\right)
$$

$\left|v\left(t_{1}, x_{1}\right)\right| \leq$ const. (indep. of $h$, dep. on $D$ and $\sup _{D}\left\{\left|u_{1}\right|,\left|u_{2}\right|\right\}$,
$\left|\frac{\partial v}{\partial x_{1}}\right| \leq$ const. (indep. of $h$ ) for $\left(t_{1}, x_{1}\right) \in D_{\cap}\{t \geq \alpha\}, \rho$ : fixed,
$\underset{-\infty<x_{1}<+\infty}{\text { Variation }} v\left(t_{1}, x_{1}\right)<$ const. (indep. of $h$ and $t$ ) for $\rho$ : fixed.
Thus using the definition (3) of the generalised solution, and tending $h, \rho$ to zero appropriately, then we have

$$
\begin{align*}
\iint_{t \geq 0}\left(u_{1}-u_{2}\right) F d t \mathrm{~d} x & =\iint\left(u_{1}-u_{2}\right)\left(\frac{\partial v}{\partial t}+\phi_{h} \frac{\partial v}{\partial x}+\psi_{h \rho} v\right) d t d x  \tag{11}\\
& =\iint\left(u_{1}-u_{2}\right)\left[\left(\phi_{h}-\phi\right) \frac{\partial v}{\partial x}+\left(\psi_{h \rho}-\psi\right) v\right] d t d x=0
\end{align*}
$$

§ 2. Existence Theorem. Hereafter we assume that

$$
h(u) \leq \text { const. }\left(u^{2}+1\right) \text { for } \quad u \geq 0
$$

$$
\begin{equation*}
h(u) \geq- \text { const. }\left(u^{2}+1\right) \text { for } u<0 \text { and there exist } \tag{12}
\end{equation*}
$$

$$
u_{0}=\text { const. such that } h\left(u_{0}\right)=0 .
$$

For the initial value $u_{0}(x)$ we assume

$$
\begin{equation*}
u_{0}(x)-u_{0} \tag{13}
\end{equation*}
$$

is some bounded measurable function with compact support.
Theorem. The generalised solution of Cauchy problem (1) (2), which satisfies the estimate (5), exists for $0 \leq t<+\infty,-\infty<x<+\infty$ under the assumptions (12) (13).

The proof is analogous to that of [2]. For the simplicity of the argument we discuss the case that $f_{u}(0)=0, h(0)=0$ and $u_{0}(x)$ is a $L^{\infty}$-function with compact support.

The solution of the characteristic equation of (1)

$$
\begin{equation*}
\frac{d x}{d t}=f_{u}(u), \quad \frac{d u}{d t}=h(u) \tag{14}
\end{equation*}
$$

with the initial values $x(0, \xi)=\xi, u(0, \xi)=u_{0}(\xi), \xi \in(a, b)$ satisfies the following

$$
\begin{align*}
& \int_{\substack{u_{0}(\xi) \\
u(t, \xi)}}^{u(t, \xi)=u_{0}(\xi) \text { for } \quad h\left(u_{0}(\xi)\right)=0 .} \begin{array}{l}
f_{u}(u) \\
h(u)
\end{array} u=x(t, \xi)-\xi, \text { or }  \tag{15}\\
& 0 .
\end{align*}
$$

Because of the continuous differentiability of $h(u)$ and the formula (15) with $f_{u u} \geq \delta>0$ we have

$$
\begin{align*}
& 0 \leq u(t, \xi) \leq u_{0}(\xi) e^{x-\xi} \quad \text { for } \quad u_{0}(\xi) \geq 0  \tag{16}\\
& 0 \geq u(t, \xi) \geq u_{0}(\xi) e^{-(x-\xi)} \quad \text { for } \quad u_{0}(\xi)<0 .
\end{align*}
$$

Differentiation (14) with respect to $\xi$ gives

$$
\begin{aligned}
& \frac{\partial u(t, \xi)}{\partial \xi}=\frac{\partial u(0, \xi)}{\partial \xi} \exp \int_{0}^{t} h_{u}(u(\tau, \xi)) d \tau \\
& \frac{\partial x(t, \xi)}{\partial \xi}=\frac{\partial x(0, \xi)}{\partial \xi}+\frac{\partial u(0, \xi)}{\partial \xi} \int_{0}^{t} f_{u u}(u(\tau, \xi)) \exp \int_{0}^{\tau} h_{u}(u(\eta, \xi)) d \eta d \tau
\end{aligned}
$$

and so under the condition $\partial x(0, \xi) / \partial \xi \geq 0, \partial u(0, \xi) / \partial \xi \geq 0$ we have

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial \xi} / \frac{\partial x}{\partial \xi} \leq \frac{\exp \int_{0}^{t} h_{u}(u(\tau, \xi)) d \tau}{\int_{0}^{t} f_{u u}(u(\tau, \xi)) \exp \int_{0}^{\tau} h_{u}(u(\eta, \xi)) d \eta d \tau}  \tag{17.1}\\
& \leq \frac{\text { const. } \exp |x|}{\delta t}
\end{align*}
$$

In the case that the initial is $x(0, \varepsilon)=$ const,

$$
u(0, \varepsilon)=u_{-}+\varepsilon\left(u_{+}-u_{-}\right) \quad \text { for } \quad 0 \leq \varepsilon \leq 1, u_{-}<u_{+}
$$

the same is true:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \varepsilon} / \frac{\partial x}{\partial \varepsilon} \leq \frac{\text { const. } \exp |x|}{\delta t} \tag{17.2}
\end{equation*}
$$

Now we approximate the initial condition $u_{0}(x)$ with piecewise constant functions $u^{h}(0, x)(h>0)$ :

$$
\begin{equation*}
u^{h}(0, x)=\frac{1}{h} \int_{k h}^{(k+1) h} u_{0}(\xi) d \xi \quad \text { for } \quad k h<x<(k+1) h, \tag{18}
\end{equation*}
$$

where $u^{h}(0, x) \equiv 0$ for $|x| \geq^{\exists} N>0$,
then we construct the generalised solution for the Cauchy problem (1)(18) by means of the solution of the characteristics equation (14) with the initial values

$$
\begin{equation*}
x(0, \xi)=\xi, \quad u(0, \xi)=u^{h}(0, \xi), \tag{19}
\end{equation*}
$$

where

$$
\xi \in(k h,(k+1) h), k=0, \pm 1, \pm 2, \cdots,
$$

and if $u^{h}(0, k h-0)<u^{h}(0, k h+0)$, then we supplement the initial values
(20) $x(0, \varepsilon)=k h, u(0, \varepsilon)=u^{h}(0, k h-0)+\varepsilon\left(u^{h}(0, k h+0)-u^{h}(0, k h-0)\right)$, for $0 \leq \varepsilon \leq 1$ and necessary $k$.

The method to construct the generalised solutions $u^{h}(t, x)$ for the Cauchy problem (1)(18) is analogous to that of [2], thus using the formulae (16), (17) for $u^{h}(t, x)$ we have the following

$$
\begin{aligned}
& -C \leq u^{h}(t, x) \leq \alpha(x) \quad \text { for } x \geq 0, \\
& -\alpha(-x) \leq u^{h}(t, x) \leq C \quad \text { for } \quad x<0, \\
& \frac{u^{h}\left(t, x_{1}\right)-u^{h}\left(t, x_{2}\right)}{x_{1}-x_{2}}<K\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

where $K\left(t, x_{1}, x_{2}\right)$ is continuous in $t>0,-\infty<x_{1}, x_{2}<+\infty$. On these bases by the analogous argument in [2] we see that for $\forall K$ : compact subdomain in $\{t \geq 0,-\infty<x<+\infty\} u^{h}(t, x)$ is uniformly bounded and compact in $L^{1}(K)$, i.e.,

$$
\begin{aligned}
& \sup _{K}\left|u^{h}(t, x)\right| \leq \text { const. (indep. of } h \text { ), } \\
& \text { Variation }\left\{u^{h}(t, x)\right\} \leq \frac{\text { const. }}{t} \text { (indep. of } h \text { ), } \\
& \int_{-X x \leq x \leq x}^{x}\left|u^{h}\left(t_{1}, x\right)-u^{h}\left(t_{2}, x\right)\right| d x \leq \text { const. }\left|t_{1}-t_{2}\right| \\
& \text { for } t_{1}, t_{2} \geq \forall \alpha>0 \\
& \text { (indep. of } h, \text { dep. on } X \text { and } \alpha \text { ). }
\end{aligned}
$$

By the way $u^{h}(t, x)$ satisfies the following for any continuously differentiable function $\varphi(t, x)$ with compact support:

$$
\begin{equation*}
\iint_{i \geq 0}\left[u^{h} \frac{\partial \varphi}{\partial t}+f\left(u^{h}\right) \frac{\partial \varphi}{\partial x}+h\left(u^{h}\right) \varphi\right] d t d x+\int_{-\infty}^{+\infty} u^{h}(0, x) \varphi(0, x) d x=0 \tag{21}
\end{equation*}
$$

and considering that there exist a subsequence $u^{h j}(t, x)$ of $u^{h}(t, x)$ such
that $u^{h j}(t, x) \rightarrow u(t, x) \in L^{\infty}(\mathrm{loc})$ in $L^{1}(\mathrm{loc})$, passing to the limit in (21) along $h j \rightarrow 0$, then we have the following for the limit function $u(t, x)$

$$
\iint_{t \geq 0}\left[u \frac{\partial \varphi}{\partial t}+f(u) \frac{\partial \varphi}{\partial x}+h(u) \varphi\right] d t d x+\int_{-\infty}^{+\infty} \varphi(0, x) u_{0}(x) d x=0
$$

that is, $u(t, x)$ is the desired generalised solution for (1)(2), and also the uniqueness of the generalised solution concludes that all sequence $u^{h}(t, x)$ converge to $u(t, x)$ in $L^{1}(\mathrm{loc})$.

Remark. 1. For the equation $u_{t}+\left(u^{2} / 2\right)_{x}=g(x) u^{2}$, where $g(x)$ is any continuously differentiable function, we have an analogous result to the above, if we take the above definition of the generalised solution. (cf. [2]).
2. If we take the assumption $u_{0}(x) \in L^{\infty}$ instead of

$$
u_{0}(x)-u_{0} \in L^{\infty} \cap \mathcal{S}^{\prime}
$$

(or $u_{0}(x) \in L^{\infty}$ and the set $\left\{x \mid h\left(u_{0}(x)\right) \neq 0\right\}$ is equivalent almost everywhere to some compact set), we can not generally expect that the generalised solution of (1)(2) exists in $t \geq 0$ and is locally bounded in $t \geq 0,-\infty<x<+\infty$ under the assumption (12).
3. If we take $h(u)=u^{2+\alpha}(\alpha>0$, const.), then even for the case $u_{0}(x) \in L^{\infty} \cap \mathcal{S}^{\prime}$ we can not generally expect that the generalised solution of (1)(2) exists and is locally bounded in $t \geq 0,-\infty<x<+\infty$, but the same existence theorem as the above is true under the additional condition that if $u$ is infinite, then

$$
\int_{u_{0}}^{u} \frac{f_{u}(v)}{h(v)} d v \text { is infinite for finite values } u_{0}
$$

(by virtue of (15)).
The writer wishes to express his sincere gratitude to Professor M. Tada and Professor M. Yamaguti for valuable encouraging suggestions and their interest in this note.

## References

[1] O. A. Oleinik: Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Trans. Ser. II, 26, 95-172.
[2] T. Nishida: A remark on a nonlinear hyperbolic equation of first order. Mem. Fac. Eng. Kyoto Univ., 24, 213-223 (1967).

