212. A Note on Products of Spaces with Generalized Compactness Properties^{*)}

By P. T. LAYMAN

Harvey Mudd College, Claremont, California

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

Let m and n be infinite cardinals, $m \ge n$, and let C_n (respectively C_n^m) be the collection of all topological spaces Y with the property that every open cover C of Y (with card $C \le m$) has an open refinement \mathcal{R} with card $\mathcal{R} < n$. L. H. Martin [6] has shown that if X is compact, if Y belongs to C_n or C_n^m , and if m=n, then $X \times Y$ belongs to C_n or C_n^m , respectively. The purpose of this paper is to extend Martin's result to the case that $m \ne n$.

The following characterization of C_n and C_n^m was suggested by a definition of I. S. Gál [3]. It is clear that

Lemma 1. C_n (respectively C_n^m) is the collection of all topological spaces Y such that, if $\{F_a: a \in A\}$ is a family of closed sets in Y (of cardinality $\leq m$) with the property that any subcollection of $\{F_a: a \in A\}$ with cardinality < n has a nonempty intersection, then $\cap \{F_a: a \in A\} \neq \phi$.

As special cases of C_n^m where $m \neq n$, note that

(i) $C_{\mathbf{x}_0}^m$ is the collection of all *m*-compact spaces (in the sense of Frolik [1]).

(ii) $C_{m'}^n$ is the collection of all (m, n)-compact spaces^{**)} (in the sense of Gál [3]).

Generalizing a result of Z. Frolik [2] gives

Lemma 2. Let f be a closed map from a space P into a space Y. If $Y \in C_n$ (respectively C_n^m) and $f^{-1}(y) \in C_n(C_n^m)$ for each $y \in Y$, then $P \in C_n(C_n^m)$.

Proof. Suppose $\{F_a: a \in A\}$ is a family of closed subsets of P(with cardinality $\leq m$) such that any subcollection of $\{F_a: a \in A\}$ with cardinality $\leq m$ has a nonempty intersection. Without loss of generality we may assume that if $\Gamma \subset A$ and card $\Gamma < n$, then $\cap \{F_a: a \in \Gamma\}$ belongs to $\{F_a: a \in A\}$. Choose $y \in \cap \{f(F_a): a \in A\}$. The space $E = f^{-1}(y)$ belongs to $C_n(C_n^m)$, and $\{F_a \cap E: a \in A\}$ is a family of closed subsets of E with the desired intersection property (and cardinality). Thus, by Lemma 1, $\cap \{F_a \cap E: a \in A\} \neq \phi$, and so $\cap \{F_a: a \in A\} \neq \phi$.

^{*)} This research was supported by National Science Foundation Undergraduate Science Education Program Grant GY-942. The author would like to thank Dr. John Greever for his invaluable help and guidance.

^{**)} Here m' is the least cardinal greater than m.

The following lemma was presented by Frolik [2].

Lemma 3. Let X be a compact space and Y be a space. The projection map from $X \times Y$ onto Y is a closed map.

As a consequence of Lemmas 2 and 3 we have

Theorem. If X is a compact topological space and Y belongs to C_n or C_n^m , then $X \times Y$ belongs to C_n or C_n^m , respectively.

Note that the proof of the theorem relies heavily on a characterization of generalized compactness properties in terms of closed sets. If m=n, Martin's product theorem also handles the collections P_n, P_n^m, M_n , and M_n^m , where $Y \in P_n(P_n^m)$ if and only if every open cover of Y (of cardinality $\leq m$) has a locally-finite refinement of cardinality< n, and $Y \in M_n(M_n^m)$ if and only if every open cover of Y (of cardinality $\leq m$) has a point-finite refinement of cardinality< n. Y. Hayashi [5] gives characterizations for P_n^m and M_n^m , for m=n, in terms of closed sets, and these characterizations lend themselves very nicely to the techniques used above; this, however, does not extend Martin's work. For the P and M spaces, in the case that $m \neq n$, the author still does not know if the general theorem is true.

References

- [1] Z. Frolík: Generalizations of compact and Lindelöf spaces. Czech. Math. J., 9, 172–217 (1959).
- [2] ----: The topological product of countably compact spaces. Czech. Math. J., **10**, 329–338 (1960).
- [3] I. Gál: On a generalized notion of compactness I, II. Proc. Nederl. Akad. Wetensch., 60, 421-435 (1957).
- [4] John Greever: Theory and examples of point-set topology. Belmont, Calif.: Brooks-Cole (1967).
- [5] Y. Hayashi: On countably metacompact spaces. Bull. Univ. Osaka Prefecture. Ser. A, 8, 161-164 (1959-60).
- [6] L. H. Martin: A product theorem concerning some generalized compactness properties. Proc. Japan Acad., 43, 960-963 (1967).

965