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Let G, and G be Lie groups and 0: G—G, be a homomorphism.
G, acts on another Lie group K from the left distributively:
ok, k)=(a k) (a-k;) for ac G, and k,, k,c K.
Let #: G—K be a C>-mapping such that
(1) 6(a-b)={0(b~")-6(a)}-6(d). _
Then clearly G={a e G: #(a)=1} is a closed subgroup of G and we
have the

Proposition 1. There is a canonical action of G on K from the
right, defined by
(2) k-a={o(a™")-k}0(a), where ke K and acG.

Assume that P(M, G) be a C~-differentiable principal fibre bundle
over a C=-manifold M of n dimensions. The we have two induced
fibre bundles T(M, K, G) and B(M, K,G) over M with fibre K,
associated with P(M, G), determined by p and the action of G on K
in Proposition 1, respectively. A C>-cross-section of T(M, K, G) is
called, by the abuse of language, as a tensor field on M of type p,
while we define a connection of type (P(M,G), p,0) as a C=-cross-
section w of B(M, K, G).

Proposition 2. If @, and ®, are two connections of type
(P(M, G), 0, 0), then ,-w;* is a tensor field on M of type o.

It must be remarked that in the above proposition wi'-w, is not
necessarily a tensor field of type o, unless K is abelian,

Our definition generalizes that of Gunning [2], who studied the
case where K is a vector space, G,=GL(K) and P(M, G) is F"(M)
we define below.

Proposition 3. The definition of the connection above includes
those of principal fibre bundles of Ehresmann [1], of vector bundles
as splittings of short exact sequences (cf. P. Libermann [6]), and
of the bundles of higher order defined by Ehresmann (cf. N. V. Qué
[7]), provided that P(M, G), p, ® are suitably chosen.

The proof is easily checked in all cases.

In the applications important is the following

Proposition 4. If M is paracompact and K is a connected
nilpotent Lie group, then there is a connection of type (P(M, G) 0,0).

In the following we consider affine connections of higher order,
as an example. Let F"(M) (resp. F"(M)) be the set of all invertible
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holonomic (resp. semi-holonomic) r-jets with source O ¢ R* and targets
in M. Then F"(M) (resp. F"(M)) is a differentiable principal bundle
over M with fibre G"(n) (resp. G™(n)). Then we have surjective
homomorphisms: #": G"(n)—GL(n, R) (resp. 7": G (n)—GL(n, R)) and
§": G (n)—G"(n), such that 7" =7z".s", where s is called the sym-
metrization operator. We put K"=Ker 7" (resp. K" =Ker 7). On
the other hand, we have canonical injections of Lie groups:

" GL(n, R)—G"(n) (resp. ":GL(n, R)—G"(n)) and j: G"(n)
—G™(n), such that j7-¢"=1¢", Then we may consider GL(n, R)C G"(n)
cG"(n), by which we define the mapping 6": G'(n)—K" (resp.
0" G (n)—K'"), satisfying the condition (1). Namely, @“'(a)
=o(a")-a, ®"=0" | G"(n) and the action of GL(n, R) on K is defined
by ack=a-k-a~' with respect to the multiplication in G"'(n), which
is clearly associative. A connection w"(resp. »”) of type (F'"(M), n",
07) (resp. (F"(M), m™,0™)) is called a symmetric affine connection
(resp. affine conmection) of order r. If r=2, it is the same as the
classical one. From Proposition 4, follows the

Proposition 5. On a paracompact differentiable manifold M,
there always exists a symmetric affine connection (resp. affine con-
nection with torsion) of order r.

Here, the torsion tensor field 7" of an affine connection w’ of
order r is defined by T"=w™.s"(w™)~'. w"(resp. ") is equivalent
to a group reduction of the group G"(n) (resp. G"(n)) of F"(M)
(resp. FF"(M)) to GL(n, R).

Proposition 6. The vanishing of the torsion tensor field of an
affine connection @™ of order r 1is the same as the obstruction
condition that the group reduction of F"(M) to GL(n, R), determined
by w™is factored through by the canonical group reduction j™: F'"(M)
—F"(M).

If there is given a closed Lie subgroup of G"(n) (resp. G"(n)),
for instance, as in the case of projective structure without torsion
(resp. with torsion) (¢f. Gunning [27], and Kobayashi and Nagano [3]),
we can discuss the connection theory for the G-structure of r-th order.
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