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Let (E, ) be a measurable space and V a proper kernel on (E, )
which satisfies the complete maximum principle. It is known that
if V1 is bounded, there then exists a sub-Markov resolvent (V)>0
such that
( 1 ) V= lira V

p-0

(see [4, p. 206]). On the other hand, if V1 is unbounded, there is
such a kernel V for which the condition (1) is never satisfied by any
sub-Markov resolvent (V)>0 (for an example, see also [4, p. 206]).

In this note we shall give a sufficient condition under which the
kernel V can be expressed in the form (1) by a sub-Markov resolvent
(V)>0. The condition is stated in terms of the pseudo-rduite and
it is similar to that of Theorem 7 of Meyer [5]. *) Our result contains
Theorem II of Lion [3] as a special case.

1. Preliminary results. Throughout this note notations and
terminology are taken from Meyer [4]. We will omit the definitions
of a proper [resp. sub-Markov] kernel, a sub-Markov resolvent (we
shall call it simply a resolvent) and a supermedian function with
respect to a resolvent. A subset of E and a function on E are always
assumed to be C-measurable, so we will emit the phrase "-measur-
able".

Let A be a subset of E and h a supermedian function with re-
spect to a resolvent (V)>0. Then the collection of supermedian
functions that dominate h on A has the smallest element, which will
be called the pseudo-rgduite of h on A and denoted by Hh [4, p. 200].
A resolvent (V)>0 is said to be closed if the kernel V0 defined by
V0=lim_0 V is proper. If (V)>0 is closed and Vof (f>_O)is finite,
then the function Vof is supermedian with respect to (V)>0. If the
support of f is contained in A, then HVof-Vof [5, p. 231].

Let U be any proper kernel on (E, ). A non-negative function

* Meyer discussed the following problem and gave a necessary and sufficient
condition for the kernel U. "When is the proper kernel U generated by a sub-

Markov kernel P in the sense U- pn,,. This is closely connected to our problem.
n0
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h on E is said to be U-quasi-excessive if, whenever U If] is bounded,
the relation h>=Uf on the set {f>0} implies h>=Uf everywhere. If
(V)>0 is closed, then a non-negative function h is supermedian with
respect to (V)>0 when and only when it is V0-quasi-excessive [5, p.
230].

2. The complete maximum principle. We shall say that a
proper kernel V on (E, ) satisfies the complete maximum principle
if it has the following property"
(C. M. P.) If a constant a=>0 and i Vlfl is finite, the relation Vf<=a
on the set {f>0} implies Vfa everywhere.

Let V a proper kernel satisfying (C. M. P.) and u, a unction such
that u(x) 0 for all x e E and Vu is bounded (such a function always
exists since V is proper). Then the kernel l defined by I?(x, A)
-I V(x, dy)u(y) satisfies also (C. M.P.). Since l?l is bounded, there

JA
exists a closed resolvent ([?)>0 such that I?=l?0. A function h is V-
quasi-excessive if and only i it is l?-quasi-excessive. Therefore, for
any V-quasi-excessive function h and any subset A, we can define the
pseudo-rduite Hh. From (C. M. P.) it follows that a potential Vf
of non-negative function f is V-quasi-excessive, so that the pseudo-
rduite HVf is well defined. Put G=I+pV or each p0.

Lemma 1. If h is V-quasi-excessive and if Glfl is finite, then
the relation Gf<=h on the set {f0} implies Gf_h-f- everywhere,
where f-- sup(0, -f).

Proof. On the set {f0}, we have pVf<_Gf<__h. However, since
h is V-quasi-excessive, pVf_<h everywhere. Hence pVf-f- <=h-f-
everywhere, which implies G,f<__ h-f- on the set {f<: 0}. Thus
Gf<__ h-f- everywhere.

Corollary 1. Any V-quasi-excessive function is G-quasi-exces-
sire.

Corollary 2. G satisfies the reinforced maximum principle as
follows"
(R. M.P.) If a constant aO and if Glfl is finite, the relation
Gf<=a on the set {f0} implies Gf<__a-f- everywhere.

Since condition (R. M. P) implies condition (C. M. P), for any
G-quasi-excessive function h and a subset A, we can define the
pseudo-rduite Hh of h on A with respect to G. If h is V-quasi-
excessive, then Hh<__Hh, or Hh is a G-quasi-excessive function
that dominates h on A. From (R. M. P.) it follows that if O<=Gf<__l,
then O<__Gf-f<=l. Therefore, if Gf=O, then f=0 and if f_>_0, then
Gf>=f. Condition (R. M. P.) is equivalent to condition (R. M.) of
Meyer [5] and hence, for any bounded G-quasi-excessive function h,
we can find a sequence of non-negative functions (g)>_ such that
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G’g increases to h as n-c [5, p. 235].
3. Construction of the resolvent. Let V be a proper kernel

satisfying (C. M.P.). Let B be the Banach space of all real valued,
bounded functions with the uniform norm and B0, the collection off
such that both f and Vf are in B. Further B/ [resp. Bg’] denotes the
cone of all non-negative functions of B [resp. B0]. In this section we
assume that V satisfies the following additional condition’
(N) For any function f e B" and any increasing sequence of subsets

(nn)nl with nIAn-- E,
lim H\ a,Vf=O.

The next lemma is a slight modification of Lemma 9 of Meyer [5].
Lemma 2. If a sequence of non-negative functions (g)z con-

verges to a function g and if there is a function f e B: such that
G,g<=Vf for all n_l, then Gg converges to Gg as n-z.

Proof. Take a function v in B, positive everywhere, and put
A={Vf<=mv} for each positive integer m. Then the sequence
(A)z is increasing to E. Since g<=G,g<= Vf, we have {gnmv}B
=E\A. Hence, for all m, n=>l,

I G’(x, dy)gn(y I ap(x’ dy)gn(y)
{qn>mV} Bm

G(Ig)(x) HZG(I,mgn)(x)-HVf(x) <HVf,
where Ia denotes the indicator of a set A. Since H,Vf converges
to 0 when m-c, the sequence of non-negative functions (g/v)z
is uniformly integrable with respect to each bounded measure
G(x, dy)v(y). Therefore, Gg converges to Gg when n--*c.

Lemma 3. There is a/amily o/ mappings (V)>0/tom B: to B:
such that (a) (I+pV)Vf Vf, (b) if f<_l, then pVf<=l, (c) V(af+bg)
=aVf+bVg, where a and b are non-negative constants, and (d)
Vpf Vqf+ (p-q)VpVqf=O.

Proof. Let f eBb’. Noting that Vf is G-quasi-excessive,
choose a sequence o non-negative functions (gn)n such that Ggn in-
creases to Vf when n-c. Since the sequence Ggn-gn is increasing
and Ggn--gn Vf, gn-Ggn-(GPgn-gn) converges to a unction g as
n-.c. Define V,f=g. By Lemma 2, we have G,Vf=Vf, proving

Vfe B2 and (a). We should note that Vf is independent of the
choice of (gn)n>, because I+pV satisfies (R. M.P.). Next, let f_<_l,
then

1 >=f= (I +pV)f-pVf=(I+pV)(f-pVf).
Noting that I+ pV satisfies (R. M. P.), we have

1 >= (I + pV)(f-pVf) (f-pVf) pVf,
proving (b). Assertion (c) is evident. Finally, let p, q0, and

f e B, then
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(I+ pV)(Vpf Vqf)- (I+ pV)Vpf-(I+ qV)Vqf+ (p q)VVf
(p q)VVqf (I + pV)((q p)V,Vaf).

Thus, using (R.M.P.) again, we have V,f-Vf=(q-p)V,Vqf.
Therefore the lemma was proved.

For each f e B0, define V,f= Vvf V,f-, where f sup (0, f).
Noting that V,fVf for all f e B" and that V is a kernel on (E, ),
we can easily verify that, for each x e E, the linear functional"
f-oV,f(x) defined on B0 has all the properties of Daniell integral.
Therefore there is a measure Vv(x, ) on E or which any function f
in B0 is measurable and

dy)f(y).V,f(x)=

Since any function in B is obtained as the limit of an increasing
sequence of functions in B, V,(x, ) is a measure on (E, ). Then
we may consider (V,),>0 as a sub-Markov resolvent.

Theorem. Let V be a proper kernel which satisfies the complete
maximum principle. Under condition (N), there is a closed sub-
Markov resolvent (Vv),>0 such that V=Vo. Such a resolvent is
unique.

Proof. The uniqueness of such a resolvent is proved in [4, p.
205]. Let (V,),>0 be a resolvent constructed above. V,f<= Vf for all

f e B" and p 0, then Vof<__ Vf for all f e B’, so that the resolvent is
closed. So we have only to prove V-Vo. For this purpose it is
sufficient that we prove Vf-Vof or all f e B’. Let f e Band p 0.
From (a) of Lemma 3, we have (I+pV)pV,f=pVf, (I+pV)(pV,)f
=pV(pV,)f, ..., (I+pV)(pV,)+lf=pV(pV,)nf, ". Therefore

F. (pV,)f+PV(pV,)nf=pVf for all nl.
Hence, V(pV,)nf<__ Vf and lim (pV,)nf=O, which implies lira V(pVv)nf

=0 by Lemma 2. Therefore

( 2 ) (pV,)f=pVfi

On the other hand, since the resolvent (V,),>0 is closed, the left hand
side of (2)is equal to pVof [4, p. 193] and so Vf=Vof. Thus the
theorem is proved.
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