105. On Generalized Commuting Properties of Metric Automorphisms. I

By Nobuo Aoki

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

Adler [1] has proved that the generalized commuting order of a totally ergodic automorphism on a compact metric abelian group is two. We shall prove that the generalized commuting order of a totally ergodic metric automorphism on the measure algebra associated with a finite measure space is two. The study in this paper depends on Adler's idea in [1].

The author wishes to express his thanks to Professor S. Tsurumi for his variable suggestions.

Let (X, Σ, m) be a finite measure space where X is a set of elements, Σ a σ -field of measurable subsets of X, and m a finite measure on Σ . A measure algebra associated with the measure space (X, Σ, m) is the Boolean algebra formed by identifying sets in Σ whose symmetric difference has measure zero. An automorphism of the measure algebra is called a *metric automorphism*. Let G be the group of all metric automorphisms on the measure algebra with the identity I. $C_n(T), n=1, 2, \cdots$ of subfamilies of G associated with a metric automorphism T are defined inductively as follows:

 $C_0(T) = \{I\},\$

 $C_n(T) = \{S \in G : STS^{-1}T^{-1} \in C_{n-1}(T)\}, n = 1, 2, \cdots$

If there exists an integer N such that $C_N(T) = C_{N+1}(T)$ then $C_n(T) = C_{n+1}(T)$ for all $n \ge N$ and in this case we define $N(T) = \min\{N: C_N(T) = C_{N+1}(T)\}$ and otherwise $N(T) = \infty$. N(T) is called the generalized commuting order of T. Let $L^2(X)$ be the Hilbert space of complex-valued square integrable functions defined on (X, Σ, m) and $L^{\infty}(X)$ the Banach space of complex-valued m essentially bounded functions defined on (X, Σ, m) . A metric automorphism T is said to have discrete spectrum if there is a basis 0 of $L^2(X)$ each term of which is a normalized proper function of the linear isometry V_T induced by T. Clearly 0 includes the circle group K in the complex plane. If T is ergodic then it turns out that |f|=1 a.e. for each $f \in \mathbf{0}$ and that $\mathbf{0} = \mathbf{0}(T) \times K$ where $\mathbf{0}(T)$ is a subgroup of 0 isomorphic to the factor group $\mathbf{0}/K$ [4]. If f is a proper function of T and α its proper value, then we denote by $\alpha_T(f)$ the proper value α . T is said to be

totally ergodic if T^n is ergodic for every positive integer n.

Proposition 1. If a metric automorphism T is ergodic and has discrete spectrum, then $S \in C_1(T)$ if and only if every element of $\mathbf{0}(T)$ is a proper function of S.

Proof. We prove first the "if" part. For each $f \in \mathbf{0}(T)$, we have $V_T(V_S f) = V_S V_T f = \alpha_T(f)(V_S f)$ a.e., $V_T f = \alpha_T(f) f$ a.e.

By proper value theorem we have $V_s f = \alpha_s(f) f$ a.e., where $\alpha_s(f)$ is a constant of absolute value one which depends only on the proper function f. Hence every $f \in \mathbf{0}(T)$ is a proper function of S.

We prove next the "only if" part. Since each function $f \in \mathbf{0}(T)$ is a proper function of T and also of S, we have

$$V_T V_S f = V_S V_T f$$
 a.e.

for each $f \in \mathbf{0}(T)$. This yields TS = ST, namely $S \in C_1(T)$.

If A is a subalgebra of $L^{\infty}(X)$ such that A is closed under complex conjugation and $L^{2}(X) = \overline{\operatorname{span} A}$, and if V is a linear isometry of $L^{2}(X)$ onto itself satisfying $||Vp||_{\infty} = ||p||_{\infty}$ for each $p \in A$, then $VL^{\infty}(X) = L^{\infty}(X)$ [2].

Proposition 2. Let T be an ergodic metric automorphism with discrete spectrum and let $S_2 \in C_2(T)$. Then there exist metric automorphism W and S such that W has each element of $\mathbf{0}(T)$ as a proper function and the linear isometry V_s induced by S maps $\mathbf{0}(T)$ onto itself and $S_2 = SW$.

Proof. There exists $S_1 \in C_1(T)$ such that $S_2TS_2^{-1}T^{-1}=S_1$. Hence $V_{S_2}V_T=V_SV_{S_2}$ where $S=S_1T$. For each $f \in \mathbf{0}(T)$

 $V_T(V_{S_2}^{-1}f) = \alpha_S(f)(V_{S_2}^{-1}f)$ a.e., $V_Tf = \alpha_T(f)f$ a.e.

Since proper functions associated with different proper values are orthogonal in $L^2(X)$ and $\mathbf{0}(T)$ is an orthonormal base of $L^2(X)$, there exists uniquely $g \in \mathbf{0}(T)$ such that $\alpha_T(g) = \alpha_S(f)$ for each $f \in \mathbf{0}(T)$. Now we define Uf = g. We prove that U is a one-to-one mapping of $\mathbf{0}(T)$ onto itself. By $V_{S_2}V_T = V_S V_{S_2}$ we have

 $V_T(V_{s_2}^{-1}f) = \alpha_s(f)(V_{s_2}^{-1}f)$ a.e., $V_T(Uf) = \alpha_T(g)(Uf)$ a.e. (Uf = g). For each $f \in \mathbf{0}(T)$ there exists a complex number $\beta(f)$ of the absolute value one such that $V_{s_2}^{-1}f = \beta(f)Uf$ a.e. Since $V_{s_2}^{-1}\mathbf{0}(T)$ is an orthonormal base of $L^2(X)$, so is a set $\{Uf : f \in \mathbf{0}(T)\}$. Thus we can conclude that U maps $\mathbf{0}(T)$ onto itself. It remains to show that U is one-to-one. Suppose $Uf_1 = Uf_2$ a.e. for $f_1, f_2 \in \mathbf{0}(T)$ with $f_1 \neq f_2$ a.e. Then we have

 $V_{s_2}^{-1}f_1 = \beta(f_1)Uf_1$ a.e., $V_{s_2}^{-1}f_2 = \beta(f_2)Uf_2 = \beta(f_2)Uf_1$ a.e.

Thus

$$V_{S_2}^{-1}(\gamma f_1) = V_{S_2}^{-1}f_2$$
 a.e.

where γ is a complex number such that $\gamma\beta(f_1)=\beta(f_2)$. Since V_{s_2} is one-to-one, we obtain $\gamma f_1=f_2$ a.e. This is a contradiction.

Next, we put

Generalized Commuting Properties

$$V(\sum_{i=1}^{n} r_i f_i) = \sum_{i=1}^{n} r_i U f_i \quad (f_i \in \mathbf{0}(T))$$

Then $||V(\sum_{i=1}^{n} r_i f_i)||_2 = ||\sum_{i=1}^{n} r_i f_i||_2$. Hence V is an isometry which can be extended uniquely to that of $L^2(X)$ onto itself. Furthermore, we put $Rf = \beta(U^{-1}f)f$ for each $f \in \mathbf{0}(T)$. Then R is a one-to-one mapping of $\mathbf{0}(T)$ onto a set $\{\beta(U^{-1}f)f: f \in \mathbf{0}(T)\}$ and has a unique continuous extension V' such that V'f = Rf a.e. for each $f \in \mathbf{0}(T)$. Denote by A(T) the space of polynomials $\sum_{i=1}^{n} r_i f_i(f_i \in \mathbf{0}(T))$. Then A(T) is an algebra containing all polynomials and also their complex conjugations. Since $\mathbf{0}(T)$ is an abelian group the operators V and V' are multiplicative on A(T). Thus, for each $p \in A(T)$, $||(Vp)^n||_2 \leq m(X)^{1/2} ||p||_{\infty}^n$ where $||p||_{\infty} = \text{ess.}$ sup |p|. Consequently $||Vp||_{\infty} \leq ||p||_{\infty}$. Similarly we have $||V^{-1}p||_{\infty}$ $\leq ||p||_{\infty}$. Therefore $||Vp||_{\infty} = ||p||_{\infty}$ and hence $VL^{\infty}(X) = L^{\infty}(X)$. Since, for f, $g \in L^{\infty}(X)$, we can choose $\{p_n\}, \{q_n\} \subset A(T)$ so that $||p_n - f||_2 \rightarrow 0$ as $n \to \infty$ and $||q_n - g||_2 \to 0$ as $n \to \infty$, V(fg) = VfVg a.e. By multiplication theorem, there exists a metric automorphism S^{-1} which induces V. The same argument leads that for V' there exists a metric automorphism W^{-1} which induces V'. Consequently we have

 $V_{S_2} = V_S V_W$, namely $S_2 = SW$.

Proposition 3. Let T be a totally ergodic metric automorphism with discrete spectrum, S a metric automorphism whose induces isometry V_S maps $\mathbf{0}(T)$ onto itself, and W a metric automorphism which has every element in $\mathbf{0}(T)$ as a proper function of W. If there exists a metric automorphism S' such that $S'TS'^{-1}T^{-1}=SW$, then S is an identity.

Proof. Suppose that $f \in \mathbf{0}(T)$ and Q = SW, and consider the Fourier expansion of $V_{S'}f$, $V_{S'}f = \sum_i \langle V_{S'}f, f_i \rangle f_i$ a.e. $(f_i \in \mathbf{0}(T))$. Then, by $V_{S'}V_T = (V_QV_T)V_{S'}$, we have

$$\sum_{i} \alpha_{T}(f) \langle V_{S'}f, f_i \rangle f_i = \sum_{i} \alpha_{T}(f_i) \alpha_{W}(f_i) \langle V_{S'}f, f_i \rangle V_{S}f_i \text{ a.e.}$$

and so

$$lpha_{T}(f)\langle V_{S'}f, V_{S}f_{i}
angle = lpha_{T}(f_{i})lpha_{W}(f_{i})\langle V_{S'}f, f_{i}
angle$$

for each *i*. If f_i has an infinite orbit under V_s then infinitely many of the coefficients must have the same absolute value $|\langle V_{s'}f, f_i \rangle|$. On the other hand, the coefficients are square summable and so $\langle V_{s'}f, f_i \rangle = 0$. Thus each f_i with non-zero coefficient has a finite orbit under V_s . $V_{s'}0(T)$ is an orthonormal base of $L^2(X)$, and for each $f \in 0(T)$, $V_{s'}f$ can be expanded in terms of elements of 0(T) which are periodic under V_s . Therefore the set of proper functions in 0(T)which are periodic under V_s is also an orthonormal base of $L^2(X)$. We have shown that every $f \in 0(T)$ must have a finite orbit under V_s . Suppose now $V_s^n f = f$ a.e. for some $f \in 0(T)$. Since N. Aoki

$$(V_{Q}V_{T})^{n}f = \alpha_{T}(f)\alpha_{W}(f)\alpha_{T}(V_{S}f)\alpha_{W}(V_{S}f)$$

$$\cdots \alpha_{T}(V_{S}^{n-1}f)\alpha_{W}(V_{S}^{n-1}f)V_{S}^{n}f \quad \text{a.e.,}$$

$$(V_{Q}V_{T})^{n}V_{S}f = \alpha_{T}(V_{S}f)\alpha_{W}(V_{S}f)$$

$$\cdots \alpha_{T}(V_{S}^{n}f)\alpha_{W}(V_{S}^{n}f)V_{S}^{n+1}f \quad \text{a.e.,}$$

we have

 $(V_Q V_T)^n \varphi = \varphi$ a.e.

where $\varphi = f^{-1}V_S f$. Since QT is isomorphic to T and T is totally ergodic, $\varphi = 1$ a.e. Thus we obtain $V_S f = f$ a.e. for each $f \in \mathbf{0}(T)$, and so S is an identity.

Proposition 4. If a metric automorphism T is totally ergodic and has discrete spectrum, then its commuting order is two.

Proof. For $S_3 \in C_3(T)$, choose $S_2 \in C_2(T)$ so that $V_{S_3}V_TV_{S_3}^{-1} = V_{S_2}V_T$. By Proposition 2, there exist metric automorphisms W and S such that W has each element of $\mathbf{0}(T)$ as a proper function and V_S maps $\mathbf{0}(T)$ onto itself and $S_2=SW$. By Proposition 3, S is the identity and so

$$V_{S_3}V_TV_{S_3}^{-1}f = V_{S_2}V_Tf = \alpha_T(f)\alpha_W(f)V_Sf = \alpha_T(f)\alpha_W(f)f \text{ a.e.,}$$
$$V_Tf = \alpha_T(f)f \text{ a.e.}$$

for each $f \in \mathbf{0}(T)$. Thus we observe that every $f \in \mathbf{0}(T)$ is a proper function of $S_3TS_3^{-1}T^{-1}$, and by Proposition 1 we can conclude that $S_3TS_3^{-1}T^{-1} \in C_1(T)$, and so $S_3 \in C_2(T)$.

Proposition 5. If a metric automorphism T is totally ergodic and has discrete spectrum, then $C_0(T)$, $C_1(T)$, and $C_2(T)$ are subgroups of G.

Proof. From the definition, $C_0(T)$ is a subgroup of G. Suppose $S_1, S'_1 \in C_1(T)$. Then, for each $f \in \mathbf{0}(T), V_{S_1}f = \alpha_{S_1}(f)f$ a.e., and $V_{S'_1}f = \alpha_{S'_1}(f)$ a.e. Therefore $V_{S'_1}V_{S_1^{-1}}f = \alpha_{S'_1}(f)\alpha_{S_1}(f)^{-1}f$ a.e. By Proposition 1, we observe that $S'_1S_1^{-1} \in C_1(T)$. It remains to show that $C_2(T)$ is a subgroup of G. Let $S_2 \in C_2(T)$ [$S'_2 \in C_2(T)$]. Then there exist metric automorphisms W and S [W' and S'] such that W [W'] has each element of $\mathbf{0}(T)$ as a proper function and V_S [$V_{S'}$] maps $\mathbf{0}(T)$ onto itself and $S_2 = SW$ [$S'_2 = S'W'$]. Thus we have

 $V_{S'_2S_1^{-1}}(V_Sf) = V_{S'_2}(\alpha_W(f)^{-1}f) = \alpha_W(f)^{-1}\alpha_{W'}(f)V_{S'}f \text{ a.e.}$ for each $f \in \mathbf{0}(T)$. Consequently

 $V_{(S_{0}^{\prime}S_{0}^{-1})T(S_{0}^{\prime}S_{0}^{-1})^{-1}T^{-1}}(V_{S'}f) = \alpha_{T}(V_{S'}f)^{-1}\alpha_{T}(V_{S}f)V_{S'}f \text{ a.e.}$

Every $f \in \mathbf{0}(T)$ is a proper function of $(S'_2S_2^{-1})T(S'_2S_2^{-1})^{-1}T^{-1}$. Thus, by Proposition 1, we have $(S'_2S_2^{-1})T(S'_2S_2^{-1})^{-1}T^{-1} \in C_1(T)$, that is, $S'_2S_2^{-1} \in C_2(T)$.

References

- R. L. Adler: Generalized commuting properties of measure preserving transformations. Trans. Amer. Math. Soc., 115, 1-13 (1965).
- [2] N. Dinculeanu and C. Foias: A universal model for ergodic transformations on separable measure spaces. Michigan Math. Jour., 13, 109-117 (1966).
- [3] P. R. Halmos: Lectures on Ergodic Theory. Math. Soc. of Japan, Tokyo (1956).
- [4] A. G. Kurosh: The Theory of Groups, Vol. I. Chelsea, New York (1955).