95. Calculus in Ranked Vector Spaces. V

By Masae Yamaguchi
Department of Mathematics, University of Hokkaido
(Comm. by Kinjirô KunugI, m. J. A., June 12, 1968)

(2.1.8) Proposition. If E_{2} is a separated ranked vector space, then the only remainder $r \in R\left(E_{1} ; E_{2}\right)$ which is linear is the zero map.

Proof. Let x be an arbitrary point of E_{1} and consider a sequence $\left\{x_{n}\right\}$ such that $x_{n}=x$ for $n=0,1,2, \cdots$. Then by (1.7.3) $\left\{x_{n}\right\}$ is a quasi-bounded sequence. Let $\left\{\lambda_{n}\right\}$ be a sequence in \mathfrak{R} with $\lambda_{n} \rightarrow 0$, then it follows from $r \in R\left(E_{1} ; E_{2}\right)$ that

$$
\left\{\lim \frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}\right\} \ni 0
$$

The linearity of r implies

$$
\begin{aligned}
& \frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}=\frac{\lambda_{n} r\left(x_{n}\right)}{\lambda_{n}}=r\left(x_{n}\right) \\
& \therefore \quad\left\{\lim r\left(x_{n}\right)\right\} \ni 0 .
\end{aligned}
$$

On the other hand, using $r\left(x_{n}\right)=r(x)$ for $n=0,1,2, \cdots$ and (1.2.4), we have

$$
\left\{\lim r\left(x_{n}\right)\right\} \ni r(x) .
$$

Since E_{2} is a separated ranked vector space, by (1.4.3)

$$
r(x)=0
$$

Hence $r: E_{1} \rightarrow E_{2}$ is the zero map.
2.2. Differentiability at a point. In order to make use of (2.1.8) we assume henceforth that all spaces E_{1}, E_{2}, \cdots are separated.
(2.2.1) Proposition. Let $f: E_{1} \rightarrow E_{2}$ be a map between ranked vector spaces E_{1}, E_{2}. If there exists a map $l \in L\left(E_{1} ; E_{2}\right)$ such that the $\operatorname{map} r: E_{1} \rightarrow E_{2}$ defined by

$$
f(a+h)=f(a)+l(h)+r(h)
$$

is a remainder, then l is uniquely determined.
Proof. Suppose that there exist two maps $l_{1}, l_{2} \in L\left(E_{1} ; E_{2}\right)$ such that the maps r_{1}, r_{2} defined by

$$
\begin{aligned}
& f(a+h)=f(a)+l_{1}(h)+r_{1}(h), \\
& f(a+h)=f(a)+l_{2}(h)+r_{2}(h)
\end{aligned}
$$

are remainders. Then we have

$$
l_{1}(h)-l_{2}(h)=r_{2}(h)-r_{1}(h) .
$$

Since by (2.1.4) $R\left(E_{1} ; E_{2}\right)$ is a vector space and by (2.1.5) $L\left(E_{1} ; E_{2}\right)$ is also a vector space,

$$
r_{2}-r_{1} \in R\left(E_{1} ; E_{2}\right) \quad \text { and } \quad r_{2}-r_{1} \in L\left(E_{1} ; E_{2}\right) .
$$

Hence it follows, using (2.1.8), that

$$
r_{2}-r_{1}=0 \quad \therefore \quad l_{1}=l_{2}
$$

which completes the proof.
(2.2.2) Definition. If there exists a map $l \in L\left(E_{1} ; E_{2}\right)$ such that the map $r: E_{1} \rightarrow E_{2}$ defined by

$$
f(a+h)=f(a)+l(h)+r(h)
$$

is a remainder, then the map $f: E_{1} \rightarrow E_{2}$ is said to be differentiable at the point a and the map $l \in L\left(E_{1} ; E_{2}\right)$ which by (2.2.1) is uniquely determined, is then called the derivative of f at the point a. It will be denoted as follows:

$$
l=D f(a) \quad \text { or } \quad l=f^{\prime}(a) .
$$

(2.2.3) Example. A constant map $K: E_{1} \rightarrow E_{2}$ is differentiable at each point $a \in E_{1}$, and $D K(a)=0$.
(2.2.4) Proposition. If $f: E_{1} \rightarrow E_{2}$ is differentiable at a point a, then it is continuous at the point a in the sense of L-convergence.

Proof. Let $\left\{\operatorname{Lim} x_{n}\right\} \ni a$, i.e.,

$$
x_{n}-a=\lambda_{n} x_{n}^{\prime}, \quad \text { for } n=0,1,2, \cdots
$$

where $\lambda_{n} \rightarrow 0$ in \Re and $\left\{x_{n}^{\prime}\right\}$ is a quasi-bounded sequence in E_{1}.
By assumption we have

$$
f(a+h)=f(a)+l(h)+r(h)
$$

where $l \in L\left(E_{1} ; E_{2}\right)$ and $r \in R\left(E_{1} ; E_{2}\right)$. Hence

$$
\begin{aligned}
f\left(x_{n}\right) & =f\left(a+x_{n}-a\right) \\
& =f(a)+l\left(x_{n}-a\right)+r\left(x_{n}-a\right) \\
& =f(a)+l\left(\lambda_{n} x_{n}^{\prime}\right)+r\left(\lambda_{n} x_{n}^{\prime}\right) \\
\therefore \quad f\left(x_{n}\right) & -f(a)=l\left(\lambda_{n} x_{n}^{\prime}\right)+r\left(\lambda_{n} x_{n}^{\prime}\right) .
\end{aligned}
$$

Since $l \in L\left(E_{1} ; E_{2}\right)$,

$$
\begin{aligned}
& =\lambda_{n} l\left(x_{n}^{\prime}\right)+r\left(\lambda_{n} x_{n}^{\prime}\right) \\
\therefore \quad f\left(x_{n}\right)-f(a) & =\lambda_{n}\left(l\left(x_{n}^{\prime}\right)+\frac{r\left(\lambda_{n} x_{n}^{\prime}\right)}{\lambda_{n}}\right) .
\end{aligned}
$$

By $r \in R\left(E_{1} ; E_{2}\right)$

$$
\left\{\lim \frac{r\left(\lambda_{n} x_{n}^{\prime}\right)}{\lambda_{n}}\right\} \ni 0
$$

and therefore $\left\{\frac{r\left(\lambda_{n} x_{n}^{\prime}\right)}{\lambda_{n}}\right\}$ is a quasi-bounded sequence.
Thus it follows from (1.7.7), (1.7.5) that

$$
\left\{l\left(x_{n}^{\prime}\right)+\frac{r\left(\lambda_{n} x_{n}^{\prime}\right)}{\lambda_{n}}\right\}
$$

is also a quasi-bounded sequence.

$$
\therefore \quad\left\{\operatorname{Lim} f\left(x_{n}\right)\right\} \ni f(a)
$$

which completes the proof.
2.3. The chain rule. (2.3.1) Theorem. Let E_{1}, E_{2}, E_{3} be ranked vector spaces, and suppose that there are two maps given :

$$
f: E_{1} \rightarrow E_{2}, \quad g: E_{2} \rightarrow E_{3} .
$$

If $f: E_{1} \rightarrow E_{2}$ is differentiable at a point $a \in E_{1}$ and $g: E_{2} \rightarrow E_{3}$ is differentiable at the point $b=f(a) \in E_{2}$, then $g \cdot f$ is differentiable at the point $a \in E_{1}$ and

$$
D(g \cdot f)=D g(b) \cdot D f(a)
$$

Proof. By assumption we have

$$
\begin{aligned}
& f(a+h)=f(a)+l_{1}(h)+r_{1}(h) \\
& g(b+k)=g(b)+l_{2}(k)+r_{2}(k)
\end{aligned}
$$

where $l_{1}=D f(a) \in L\left(E_{1} ; E_{2}\right), l_{2}=D g(b) \in L\left(E_{2} ; E_{3}\right), r_{1} \in R\left(E_{1} ; E_{2}\right)$, and $r_{2} \in R\left(E_{2} ; E_{3}\right)$.

$$
g(f(a+h))=g(b+k)
$$

where $k=l_{1}(h)+r_{1}(h)$

$$
\begin{aligned}
& =g(b)+l_{2}(k)+r_{2}(k) \\
& =g(f(a))+l_{2}\left(l_{1}(h)+r_{1}(h)\right)+r_{2}\left(l_{1}(h)+r_{1}(h)\right) \\
& =(g \cdot f)(a)+\left(l_{2} \cdot l_{1}\right)(h)+\left(l_{2} \cdot r_{1}\right)(h)+\left(r_{2} \cdot\left(l_{1}+r_{1}\right)\right)(h)
\end{aligned}
$$

since $l_{1} \in L\left(E_{1} ; E_{2}\right)$ and $l_{2} \in L\left(E_{2} ; E_{3}\right)$,

$$
l_{2} \cdot l_{1} \in L\left(E_{1} ; E_{3}\right)
$$

By (2.1.4), (2.1.6), (2.1.7)

$$
l_{2} \cdot r_{1}+r_{2} \cdot\left(l_{1}+r_{1}\right) \in R\left(E_{1} ; E_{3}\right)
$$

Therefore $g \cdot f$ is differentiable at the point $a \in E_{1}$ and

$$
D(g \cdot f)=l_{2} \cdot l_{1}=D g(b) \cdot D f(a)
$$

§ 3. Examples and special cases. 3.1. The classical case.
(3.1.1) Proposition. If E_{1}, E_{2} are normed vector spaces, on which we consider the ranked topology, as in (1.6.6), determined by the norm, then the notions of differentiability at a point $a \in E_{1}$ and derivative of a map $f: E_{1} \rightarrow E_{2}$ coincide with the classical notions in the sense of Fréchet.

Proof. (a) Suppose that a map $f: E_{1} \rightarrow E_{2}$ is differentiable at a point $a \in E_{1}$ in the sense of Fréchet, i.e., there exists a map $l \in L\left(E_{1} ; E_{2}\right)$ such that the map r defined by $f(a+h)=f(a)+l(h)+r(h)$ has the following property:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\|r(h)\|}{\|h\|}=0 \tag{3.1.2}
\end{equation*}
$$

where $f^{\prime}(a)=l$.
Let $\left\{x_{n}\right\}$ be any quasi-bounded sequence in E_{1}, and $\left\{\lambda_{n}\right\}$ a sequence in \Re with $\lambda_{n} \rightarrow 0$, then by (1.9.1)

$$
\left\|\lambda_{n} x_{n}\right\| \rightarrow 0, \quad \text { for } n \rightarrow \infty
$$

Consider

$$
\left\|\frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}\right\|=\left\|x_{n}\right\| \frac{\left\|r\left(\lambda_{n} x_{n}\right)\right\|}{\left\|\lambda_{n} x_{n}\right\|}
$$

then it follows, using (3.1.2) and the fact that by (1.9.2) $\left\{\left\|x_{n}\right\|\right\}$ is bounded, that

$$
\begin{gathered}
\left\|\frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}\right\| \rightarrow 0, \quad \text { for } n \rightarrow \infty \\
\therefore \quad\left\{\lim \frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}\right\} \ni 0 .
\end{gathered}
$$

That is, $r: E_{1} \rightarrow E_{2}$ is a remainder, and therefore $f: E_{1} \rightarrow E_{2}$ is differentiable at a point $a \in E_{1}$ in the sense of ranked vector space.
(b) Suppose conversely that $f: E_{1} \rightarrow E_{2}$ is differentiable at a point $\alpha \in E_{1}$ in the sense of ranked vector space, i.e., it can be written in the following way:

$$
f(a+h)=f(a)+l(h)+r(h)
$$

where $l \in L\left(E_{1} ; E_{2}\right)$ and $r \in R\left(E_{1} ; E_{2}\right)$.
Let $\left\{x_{n}\right\}$ be any sequence in E_{1} such that

$$
\left\{\lim _{n} x_{n}\right\} \ni 0 \text {, i.e., } \lim _{n \rightarrow \infty}\left\|x_{n}\right\|=0
$$

and put

$$
y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}, \quad n=0,1,2, \cdots
$$

then by (1.9.2) $\left\{y_{n}\right\}$ is a quasi-bounded sequence.

$$
\frac{\left\|r\left(x_{n}\right)\right\|}{\left\|x_{n}\right\|}=\frac{\left\|r\left(\left\|x_{n}\right\| y_{n}\right)\right\|}{\left\|x_{n}\right\|}
$$

Since $r \in R\left(E_{1} ; E_{2}\right)$,

$$
\begin{gathered}
\frac{\left\|r\left(\left\|x_{n}\right\| y_{n}\right)\right\|}{\left\|x_{n}\right\|} \rightarrow 0, \quad \text { for } n \rightarrow \infty \\
\therefore \quad \lim \frac{\left\|r\left(x_{n}\right)\right\|}{\left\|x_{n}\right\|}=0 \\
\therefore \quad \lim _{h \rightarrow 0} \frac{\|r(h)\|}{\|h\|}=0 .
\end{gathered}
$$

Therefore $f: E_{1} \rightarrow E_{2}$ is differentiable at a point $a \in E_{1}$ in the sense of Fréchet.

It is obvious that the derivative of a map $f: E_{1} \rightarrow E_{2}$ coincides with the classical one in the sense of Fréchet.
3.2. Linear and bilinear maps. (3.2.1) Proposition. Let $f: E_{1}$ $\rightarrow E_{2}$ be a linear and continuous map between separated ranked vector spaces E_{1} and E_{2}, then it is differentiable at each point $a \in E_{1}$ and $f^{\prime}(a)=f$.

Proof. By assumption we have

$$
f(a+h)=f(a)+f(h)+0
$$

where $f \in L\left(E_{1} ; E_{2}\right)$ and $0 \in R\left(E_{1} ; E_{2}\right)$. Hence $f: E_{1} \rightarrow E_{2}$ is differentiable at each point $a \in E$ and $f^{\prime}(\alpha)=f$.
(3.2.2) Proposition. Let $b: E_{1} \times E_{2} \rightarrow E_{3}$ be a bilinear and continuous map between separated ranked vector spaces $E_{1} \times E_{2}, E_{3}$. Then $b \in R\left(E_{1} \times E_{2} ; E_{3}\right)$.

Proof. (1) It is obvious that one has $b(0)=0$.
(2) Let $\left\{z_{n}\right\}=\left\{\left(x_{n_{1}}, x_{n_{2}}\right)\right\}$ be a quasi-bounded sequence in $E_{1} \times E_{2}$ and $\left\{\lambda_{n}\right\}$ a sequence in \Re such that $\lambda_{n} \rightarrow 0$.

$$
\begin{aligned}
\theta_{b}\left(\lambda_{n}, z_{n}\right) & =\frac{b\left(\lambda_{n} z_{n}\right)}{\lambda_{n}}=\frac{b\left(\lambda_{n} x_{n 1}, \lambda_{n} x_{n 2}\right)}{\lambda_{n}} \\
& =\lambda_{n} b\left(x_{n}, x_{n 2}\right) \\
& = \pm b\left(\sqrt{\left|\lambda_{n}\right|} x_{n 1}, \sqrt{\left|\lambda_{n}\right|} x_{n 2}\right)
\end{aligned}
$$

since by (1.7.8) $\left\{x_{n_{1}}\right\},\left\{x_{n_{2}}\right\}$ are quasi-bounded sequences and $\sqrt{\left|\lambda_{n}\right|} \rightarrow 0$ in \mathfrak{R},

$$
\left\{\lim \sqrt{\left|\lambda_{n}\right|} x_{n 1}\right\} \ni 0 \quad \text { and } \quad\left\{\lim \sqrt{\left|\lambda_{n}\right|} x_{n 2}\right\} \ni 0
$$

It follows, using that $b: E_{1} \times E_{2} \rightarrow E_{3}$ is continuous, that

$$
\begin{gathered}
\left\{\lim \theta_{b}\left(\lambda_{n}, z_{n}\right)\right\} \ni 0 \\
\therefore \quad b \in R\left(E_{1} \times E_{2} ; E_{3}\right) .
\end{gathered}
$$

(3.2.3) Proposition. Let $b: E_{1} \times E_{2} \rightarrow E_{3}$ be bilinear and continuous. Then b is differentiable at each point $a=\left(a_{1}, a_{2}\right) \in E_{1} \times E_{2}$ and

$$
b^{\prime}\left(a_{1}, a_{2}\right)\left(h_{1}, h_{2}\right)=b\left(h_{1}, a_{2}\right)+b\left(a_{1}, h_{2}\right)
$$

Proof. Let $a=\left(a_{1}, a_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$, then

$$
\begin{aligned}
b(a+h) & =b\left(a_{1}+h_{1}, a_{2}+h_{2}\right) \\
& =b\left(a_{1}, a_{2}\right)+b\left(h_{1}, a_{2}\right)+b\left(a_{1}, h_{2}\right)+b\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Put

$$
l(h)=b\left(h_{1}, a_{2}\right)+b\left(a_{1}, h_{2}\right), \quad r(h)=b(h),
$$

then it is obvious that one has

$$
l \in L\left(E_{1} \times E_{2} ; E_{3}\right),
$$

and by (3.2.2)

$$
r \in R\left(E_{1} \times E_{2} ; E_{3}\right) .
$$

Hence $b: E_{1} \times E_{2} \rightarrow E_{3}$ is differentiable at the point $a=\left(a_{1}, a_{2}\right)$ and

$$
b^{\prime}\left(a_{1}, a_{2}\right)\left(h_{1}, h_{2}\right)=b\left(h_{1}, a_{2}\right)+b\left(a_{1}, h_{2}\right)
$$

3.3. The special case $\boldsymbol{f}: \mathfrak{R} \rightarrow \boldsymbol{E}$. (3.3.1) Proposition. If $f: \mathfrak{R}$ $\rightarrow E$ is differentiable at a point $\alpha \in \mathfrak{R}$, then for any sequence $\left\{x_{n}\right\}$ in \mathfrak{R} such that $x_{n} \rightarrow 0$,

$$
\begin{equation*}
\left\{\lim \frac{f\left(\alpha+x_{n}\right)-f(\alpha)}{x_{n}}\right\} \ni f \cdot(\alpha), \tag{3.3.2}
\end{equation*}
$$

where $f^{\cdot}(\alpha)=f^{\prime}(\alpha)(1)$.
Proof. By assumption we have

$$
f(\alpha+h)=f(\alpha)+l(h)+r(h)
$$

where $l \in L(\Re ; E)$ and $r \in R(\Re ; E)$. Thus

$$
f\left(\alpha+x_{n}\right)=f(\alpha)+l\left(x_{n}\right)+r\left(x_{n}\right)
$$

since $l \in L(\Re ; E)$ implies $l\left(x_{n}\right)=l\left(x_{n} \cdot 1\right)=x_{n} l(1)$,

$$
\begin{aligned}
& f\left(\alpha+x_{n}\right)-f(\alpha)=x_{n} l(1)+r\left(x_{n}\right) \\
& \frac{f\left(\alpha+x_{n}\right)-f(\alpha)}{x_{n}}-l(1)=\frac{r\left(x_{n}\right)}{x_{n}} .
\end{aligned}
$$

It follows from $r \in R(\Re ; E)$ that

$$
\begin{gathered}
\left\{\lim \frac{r\left(x_{n} \cdot 1\right)}{x_{n}}\right\} \ni 0 \\
\therefore \quad\left\{\lim \frac{f\left(\alpha+x_{n}\right)-f(\alpha)}{x_{n}}\right\} \ni l(1)
\end{gathered}
$$

Since we assume that E is a separated ranked vector space, we may write in the following way:

$$
\lim _{n} \frac{f\left(\alpha+x_{n}\right)-f(\alpha)}{x_{n}}=f \cdot(\alpha)
$$

instead of (3.3.2).
(3.3.3) Proposition. Suppose that for any sequence $\left\{x_{n}\right\}$ in \mathfrak{R} with $x_{n} \rightarrow 0$ the following holds at a point $\alpha \in \mathfrak{R}$:

$$
\left\{\lim \frac{f\left(\alpha+x_{n}\right)-f(\alpha)}{x_{n}}\right\} \ni a
$$

where a is an element of a separated ranked vector space E. Then $f: \Re \rightarrow E$ is differentiable at the point $\alpha \in R$ and $f^{\prime}(\alpha)(x)=x a$.

Proof. Let us define a map $r: \Re \rightarrow E$ by

$$
f(\alpha+x)=f(\alpha)+x a+r(x)
$$

then it only remains to prove that $r \in R(\Re ; E)$.
Let $\left\{x_{n}\right\}$ be any quasi-bounded sequence in \Re and $\left\{\lambda_{n}\right\}$ a sequence in \Re such that $\lambda_{n} \rightarrow 0$.

$$
\begin{aligned}
\frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}} & =\frac{1}{\lambda_{n}}\left\{f\left(\alpha+\lambda_{n} x_{n}\right)-f(\alpha)-\lambda_{n} x_{n} a\right\} \\
& =x_{n}\left\{\frac{f\left(\alpha+\lambda_{n} x_{n}\right)-f(\alpha)}{\lambda_{n} x_{n}}-a\right\}
\end{aligned}
$$

Put

$$
y_{n}=\frac{f\left(\alpha+\lambda_{n} x_{n}\right)-f(\alpha)}{\lambda_{n} x_{n}}-a
$$

for $n=0,1,2, \cdots$. By assumption we have
$\left\{\lim y_{n}\right\} \ni 0$.
Since $\left\{x_{n}\right\}$ is a quasi-bounded sequence in \Re, by (1.9.2) it is bounded, i.e., there exists a number M such that

$$
\begin{aligned}
& \left|x_{n}\right|<M, \quad n=0,1,2, \cdots \\
& \therefore \quad\left\{\lim \frac{x_{n}}{M} y_{n}\right\} \ni 0, \\
& \therefore \quad\left\{\lim M \frac{x_{n}}{M} y_{n}\right\} \ni 0, \\
& \therefore \quad\left\{\lim x_{n} y_{n}\right\} \ni 0 .
\end{aligned}
$$

Therefore

$$
\left\{\lim \frac{r\left(\lambda_{n} x_{n}\right)}{\lambda_{n}}\right\} \ni 0, \quad \therefore \quad r \in R(\Re ; E)
$$

Thus $f: \Re \rightarrow E$ is differentiable at the point $\alpha \in \Re$, and $f^{\prime}(\alpha)(x)=x a$.

