95. Calculus in Ranked Vector Spaces. V

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

(2.1.8) Proposition. If E_2 is a separated ranked vector space, then the only remainder $r \in R(E_1; E_2)$ which is linear is the zero map.

Proof. Let x be an arbitrary point of E_1 and consider a sequence $\{x_n\}$ such that $x_n = x$ for $n = 0, 1, 2, \cdots$. Then by (1.7.3) $\{x_n\}$ is a quasi-bounded sequence. Let $\{\lambda_n\}$ be a sequence in \Re with $\lambda_n \rightarrow 0$, then it follows from $r \in R(E_1; E_2)$ that

$$\left\{\lim \frac{r(\lambda_n x_n)}{\lambda_n}\right\} \ni 0.$$

The linearity of r implies

$$\frac{r(\lambda_n x_n)}{\lambda_n} = \frac{\lambda_n r(x_n)}{\lambda_n} = r(x_n)$$

$$\therefore \quad \{\lim r(x_n)\} \ni 0.$$

On the other hand, using $r(x_n) = r(x)$ for $n = 0, 1, 2, \cdots$ and (1.2.4), we have

$$\{\lim r(x_n)\} \ni r(x)$$

Since E_2 is a separated ranked vector space, by (1.4.3)

$$r(x)=0.$$

Hence $r: E_1 \rightarrow E_2$ is the zero map.

2.2. Differentiability at a point. In order to make use of (2.1.8) we assume henceforth that all spaces E_1, E_2, \cdots are separated.

(2.2.1) Proposition. Let $f: E_1 \rightarrow E_2$ be a map between ranked vector spaces E_1, E_2 . If there exists a map $l \in L(E_1; E_2)$ such that the map $r: E_1 \rightarrow E_2$ defined by

$$f(a+h) = f(a) + l(h) + r(h)$$

is a remainder, then l is uniquely determined.

Proof. Suppose that there exist two maps $l_1, l_2 \in L(E_1; E_2)$ such that the maps r_1, r_2 defined by

$$f(a+h) = f(a) + l_1(h) + r_1(h),$$

$$f(a+h) = f(a) + l_2(h) + r_2(h)$$

are remainders. Then we have

 $l_1(h) - l_2(h) = r_2(h) - r_1(h).$

Since by (2.1.4) $R(E_1; E_2)$ is a vector space and by (2.1.5) $L(E_1; E_2)$ is also a vector space,

 $r_2 - r_1 \in R(E_1; E_2)$ and $r_2 - r_1 \in L(E_1; E_2)$.

Hence it follows, using (2.1.8), that

 $r_2 - r_1 = 0$... $l_1 = l_2$

which completes the proof.

(2.2.2) Definition. If there exists a map $l \in L(E_1; E_2)$ such that the map $r: E_1 \rightarrow E_2$ defined by

$$f(a+h) = f(a) + l(h) + r(h)$$

is a remainder, then the map $f: E_1 \rightarrow E_2$ is said to be differentiable at the point a and the map $l \in L(E_1; E_2)$ which by (2.2.1) is uniquely determined, is then called the *derivative of f at the point a*. It will be denoted as follows:

$$l=Df(a)$$
 or $l=f'(a)$.

(2.2.3) Example. A constant map $K: E_1 \rightarrow E_2$ is differentiable at each point $a \in E_1$, and DK(a) = 0.

(2.2.4) Proposition. If $f: E_1 \rightarrow E_2$ is differentiable at a point a, then it is continuous at the point a in the sense of L-convergence.

Proof. Let $\{\text{Lim } x_n\} \ni a$, i.e.,

 $x_n - a = \lambda_n x'_n,$ for $n = 0, 1, 2, \cdots$

where $\lambda_n \rightarrow 0$ in \Re and $\{x'_n\}$ is a quasi-bounded sequence in E_1 . By assumption we have

$$f(a+h) = f(a) + l(h) + r(h)$$

where $l \in L(E_1; E_2)$ and $r \in R(E_1; E_2)$. Hence
$$f(x_n) = f(a + x_n - a)$$

$$= f(a) + l(x_n - a) + r(x_n - a)$$

$$= f(a) + l(\lambda_n x'_n) + r(\lambda_n x'_n)$$

$$\therefore \quad f(x_n) - f(a) = l(\lambda_n x'_n) + r(\lambda_n x'_n).$$

Since $l \in L(E_1; E_2)$,

$$= \lambda_n l(x'_n) + r(\lambda_n x'_n)$$

$$f(x_n) - f(a) = \lambda_n \Big(l(x'_n) + \frac{r(\lambda_n x'_n)}{\lambda_n} \Big).$$

By $r \in R(E_1; E_2)$

$$\left\{\lim \frac{r(\lambda_n x'_n)}{\lambda_n}\right\} \ni 0$$

and therefore $\left\{\frac{r(\lambda_n x'_n)}{\lambda_n}\right\}$ is a quasi-bounded sequence.

Thus it follows from (1.7.7), (1.7.5) that

$$\left\{l(x'_n)+\frac{r(\lambda_n x'_n)}{\lambda_n}\right\}$$

is also a quasi-bounded sequence.

 \therefore {Lim $f(x_n)$ } \ni f(a)

which completes the proof.

2.3. The chain rule. (2.3.1) Theorem. Let E_1, E_2, E_3 be ranked vector spaces, and suppose that there are two maps given:

No. 6]

[Vol. 44,

 $f: E_1 \rightarrow E_2$, $g: E_2 \rightarrow E_3.$ If $f: E_1 \rightarrow E_2$ is differentiable at a point $a \in E_1$ and $g: E_2 \rightarrow E_3$ is differentiable at the point $b = f(a) \in E_2$, then $g \cdot f$ is differentiable at the point $a \in E_1$ and

$$D(g \cdot f) = Dg(b) \cdot Df(a).$$

Proof. By assumption we have

 $f(a+h) = f(a) + l_1(h) + r_1(h),$ $g(b+k) = g(b) + l_2(k) + r_2(k)$ where $l_1 = Df(a) \in L(E_1; E_2)$, $l_2 = Dg(b) \in L(E_2; E_3)$, $r_1 \in R(E_1; E_2)$, and $r_2 \in R(E_2; E_3).$ g(f(a+h)) = g(b+k)where $k = l_1(h) + r_1(h)$ $= g(b) + l_{2}(k) + r_{2}(k)$ $= g(f(a)) + l_2(l_1(h) + r_1(h)) + r_2(l_1(h) + r_1(h))$

$$= (g \cdot f)(a) + (l_2 \cdot l_1)(h) + (l_2 \cdot r_1)(h) + (r_2 \cdot (l_1 + r_1))(h)$$

since $l_1 \in L(E_1; E_2)$ and $l_2 \in L(E_2; E_3)$,

 $l_2 \cdot l_1 \in L(E_1; E_3).$ By (2.1.4), (2.1.6), (2.1.7)

 $l_2 \cdot r_1 + r_2 \cdot (l_1 + r_1) \in R(E_1; E_3).$ Therefore $g \cdot f$ is differentiable at the point $a \in E_1$ and $D(g \cdot f) = l_2 \cdot l_1 = Dg(b) \cdot Df(a).$

§ 3. Examples and special cases. 3.1. The classical case.

(3.1.1) Proposition. If E_1, E_2 are normed vector spaces, on which we consider the ranked topology, as in (1.6.6), determined by the norm, then the notions of differentiability at a point $a \in E_1$ and derivative of a map $f: E_1 \rightarrow E_2$ coincide with the classical notions in the sense of Fréchet.

Proof. (a) Suppose that a map $f: E_1 \rightarrow E_2$ is differentiable at a point $a \in E_1$ in the sense of Fréchet, i.e., there exists a map $l \in L(E_1; E_2)$ such that the map r defined by f(a+h) = f(a) + l(h) + r(h) has the following property:

(3.1.2)
$$\lim_{h\to 0} \frac{||r(h)||}{||h||} = 0,$$

where f'(a) = l.

Let $\{x_n\}$ be any quasi-bounded sequence in E_1 , and $\{\lambda_n\}$ a sequence in \Re with $\lambda_n \rightarrow 0$, then by (1.9.1)

> $||\lambda_n x_n|| \rightarrow 0,$ for $n \to \infty$.

Consider

$$\left\|\left|\frac{r(\lambda_n x_n)}{\lambda_n}\right\| = ||x_n|| \frac{||r(\lambda_n x_n)||}{||\lambda_n x_n||}$$

then it follows, using (3.1.2) and the fact that by (1.9.2) $\{||x_n||\}$ is bounded, that

Calculus in Ranked Vector Spaces. V

$$\left\|\frac{r(\lambda_n x_n)}{\lambda_n}\right\| \to 0, \quad \text{for } n \to \infty$$

 $\therefore \left\{\lim \frac{r(\lambda_n x_n)}{\lambda_n}\right\} \ni 0.$

That is, $r: E_1 \rightarrow E_2$ is a remainder, and therefore $f: E_1 \rightarrow E_2$ is differentiable at a point $a \in E_1$ in the sense of ranked vector space.

(b) Suppose conversely that $f: E_1 \rightarrow E_2$ is differentiable at a point $a \in E_1$ in the sense of ranked vector space, i.e., it can be written in the following way:

$$f(a+h) = f(a) + l(h) + r(h)$$
E) and $r \in B(E : E)$

where $l \in L(E_1; E_2)$ and $r \in R(E_1; E_2)$.

Let $\{x_n\}$ be any sequence in E_1 such that

$$\{\lim_{n} x_n\} \ni 0, \text{ i.e., } \lim_{n \to \infty} ||x_n|| = 0,$$

and put

$$y_n = \frac{x_n}{||x_n||}, \quad n = 0, 1, 2, \cdots,$$

then by (1.9.2) $\{y_n\}$ is a quasi-bounded sequence.

$$\frac{||r(x_n)||}{||x_n||} = \frac{||r(||x_n||y_n)||}{||x_n||}$$

Since $r \in R(E_1; E_2)$,

$$\frac{||r(||x_n||y_n)||}{||x_n||} \rightarrow 0, \quad \text{for } n \rightarrow \infty$$

$$\therefore \quad \lim \frac{||r(x_n)||}{||x_n||} = 0$$

$$\therefore \quad \lim_{h \rightarrow 0} \frac{||r(h)||}{||h||} = 0.$$

Therefore $f: E_1 \rightarrow E_2$ is differentiable at a point $a \in E_1$ in the sense of Fréchet.

It is obvious that the derivative of a map $f: E_1 \rightarrow E_2$ coincides with the classical one in the sense of Fréchet.

3.2. Linear and bilinear maps. (3.2.1) Proposition. Let $f: E_1 \to E_2$ be a linear and continuous map between separated ranked vector spaces E_1 and E_2 , then it is differentiable at each point $a \in E_1$ and f'(a) = f.

Proof. By assumption we have

f(a+h) = f(a) + f(h) + 0

where $f \in L(E_1; E_2)$ and $0 \in R(E_1; E_2)$. Hence $f: E_1 \rightarrow E_2$ is differentiable at each point $a \in E$ and f'(a) = f.

(3.2.2) Proposition. Let $b: E_1 \times E_2 \rightarrow E_3$ be a bilinear and continuous map between separated ranked vector spaces $E_1 \times E_2$, E_3 . Then $b \in R(E_1 \times E_2; E_3)$.

[Vol. 44,

Proof. (1) It is obvious that one has b(0)=0.

(2) Let $\{z_n\} = \{(x_{n1}, x_{n2})\}$ be a quasi-bounded sequence in $E_1 \times E_2$ and $\{\lambda_n\}$ a sequence in \Re such that $\lambda_n \to 0$.

$$egin{aligned} & heta_b(\lambda_n,\,z_n)\!=\!rac{b(\lambda_n z_n)}{\lambda_n}\!=\!rac{b(\lambda_n x_{n1},\,\lambda_n x_{n2})}{\lambda_n} \ &=\!\lambda_n b(x_{n1},\,x_{n2}) \ &=\!\pm b(\sqrt{|\lambda_n|}x_{n1},\,\sqrt{|\lambda_n|}x_{n2}) \end{aligned}$$

since by (1.7.8) $\{x_{n_1}\}$, $\{x_{n_2}\}$ are quasi-bounded sequences and $\sqrt{|\lambda_n|} \rightarrow 0$ in \Re ,

$$\{\lim \sqrt{|\lambda_n|} x_{n_1}\} \ni 0 \text{ and } \{\lim \sqrt{|\lambda_n|} x_{n_2}\} \ni 0.$$

It follows, using that $b: E_1 \times E_2 \rightarrow E_3$ is continuous, that

$$\{\lim \theta_b(\lambda_n, z_n)\} \ni 0$$

. $b \in R(E_1 \times E_2; E_3).$

(3.2.3) Proposition. Let $b: E_1 \times E_2 \rightarrow E_3$ be bilinear and continuous. Then b is differentiable at each point $a = (a_1, a_2) \in E_1 \times E_2$ and

$$b'(a_1, a_2)(h_1, h_2) = b(h_1, a_2) + b(a_1, h_2).$$

Proof. Let
$$a = (a_1, a_2)$$
 and $h = (h_1, h_2)$, then
 $b(a+h) = b(a_1+h_1, a_2+h_2)$
 $= b(a_1, a_2) + b(h_1, a_2) + b(a_1, h_2) + b(h_1, h_2).$

Put

$$l(h) = b(h_1, a_2) + b(a_1, h_2), \quad r(h) = b(h),$$

then it is obvious that one has

$$l \in L(E_1 \times E_2; E_3),$$

and by (3.2.2)

 $r \in R(E_1 \times E_2; E_3).$ Hence $b: E_1 \times E_2 \rightarrow E_3$ is differentiable at the point $a = (a_1, a_2)$ and $b'(a_1, a_2)(h_1, h_2) = b(h_1, a_2) + b(a_1, h_2).$

3.3. The special case $f: \mathfrak{R} \to E$. (3.3.1) Proposition. If $f: \mathfrak{R} \to E$ is differentiable at a point $\alpha \in \mathfrak{R}$, then for any sequence $\{x_n\}$ in \mathfrak{R} such that $x_n \to 0$,

(3.3.2)
$$\left\{\lim \frac{f(\alpha+x_n)-f(\alpha)}{x_n}\right\} \ni f'(\alpha),$$

where $f(\alpha) = f'(\alpha)(1)$.

$$f(\alpha + h) = f(\alpha) + l(h) + r(h)$$

where $l \in L(\mathfrak{R} ; E)$ and $r \in R(\mathfrak{R} ; E)$. Thus
 $f(\alpha + x_n) = f(\alpha) + l(x_n) + r(x_n)$,
since $l \in L(\mathfrak{R} ; E)$ implies $l(x_n) = l(x_n \cdot 1) = x_n l(1)$,
 $f(\alpha + x_n) - f(\alpha) = x_n l(1) + r(x_n)$
 $\frac{f(\alpha + x_n) - f(\alpha)}{x_n} - l(1) = \frac{r(x_n)}{x_n}$

It follows from $r \in R(\Re; E)$ that

$$\left\{\lim \frac{r(x_n \cdot \mathbf{1})}{x_n}\right\} \ni 0$$

$$\therefore \quad \left\{\lim \frac{f(\alpha + x_n) - f(\alpha)}{x_n}\right\} \ni l(\mathbf{1})$$

Since we assume that E is a separated ranked vector space, we may write in the following way:

$$\lim_{n} \frac{f(\alpha + x_{n}) - f(\alpha)}{x_{n}} = f(\alpha)$$

instead of (3.3.2).

(3.3.3) Proposition. Suppose that for any sequence $\{x_n\}$ in \Re with $x_n \rightarrow 0$ the following holds at a point $\alpha \in \Re$:

$$\left\{\lim \frac{f(\alpha+x_n)-f(\alpha)}{x_n}\right\} \ni a$$

where a is an element of a separated ranked vector space E. Then $f: \Re \rightarrow E$ is differentiable at the point $\alpha \in R$ and $f'(\alpha)(x) = xa$.

Proof. Let us define a map $r: \Re \rightarrow E$ by

 $f(\alpha + x) = f(\alpha) + xa + r(x)$

then it only remains to prove that $r \in R(\Re; E)$.

Let $\{x_n\}$ be any quasi-bounded sequence in \Re and $\{\lambda_n\}$ a sequence in \Re such that $\lambda_n \rightarrow 0$.

$$\frac{r(\lambda_n x_n)}{\lambda_n} = \frac{1}{\lambda_n} \{ f(\alpha + \lambda_n x_n) - f(\alpha) - \lambda_n x_n a \}$$
$$= x_n \{ \frac{f(\alpha + \lambda_n x_n) - f(\alpha)}{\lambda_n x_n} - a \}.$$

 \mathbf{Put}

$$y_n = \frac{f(\alpha + \lambda_n x_n) - f(\alpha)}{\lambda_n x_n} - a$$

for $n=0, 1, 2, \cdots$. By assumption we have $\{\lim y_n\} \ni 0.$

Since $\{x_n\}$ is a quasi-bounded sequence in \Re , by (1.9.2) it is bounded, i.e., there exists a number M such that

$$|x_n| < M, \qquad n = 0, 1, 2, \cdots$$

$$\therefore \quad \left\{ \lim \frac{x_n}{M} y_n \right\} \ni 0,$$

$$\therefore \quad \left\{ \lim M \frac{x_n}{M} y_n \right\} \ni 0,$$

$$\therefore \quad \left\{ \lim x_n y_n \right\} \ni 0.$$

Therefore

$$\left\{\lim \frac{r(\lambda_n x_n)}{\lambda_n}\right\} \ni 0, \qquad \therefore \quad r \in R(\mathfrak{R} ; E).$$

Thus $f: \mathfrak{R} \to E$ is differentiable at the point $\alpha \in \mathfrak{R}$, and $f'(\alpha)(x) = xa$.

No. 6]