94. On a Hardy's Theorem

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Zyoiti Suetuna, m. J. A., June 12, 1968)

1. Introduction and theorems. 1.1. Let f be an even and integrable function with period 2π and with mean value zero and let its Fourier series be

$$
\begin{equation*}
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x \tag{1}
\end{equation*}
$$

We suppose always $1<p<\infty$. By L^{p} we denote the space of such functions whose p-th powers are integrable. We put

$$
\begin{equation*}
A_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k} \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

then Hardy [1] proved that there is an integrable function F such that

$$
\begin{equation*}
F(x) \sim \sum_{n=1}^{\infty} A_{n} \cos n x \tag{3}
\end{equation*}
$$

Further he [1] proved the following
Theorem I. $f \in L^{p} \Rightarrow F \in L^{p}$.
Petersen [2] has proved that the space L^{p} in Theorem I can be replaced by the Lorentz space Λ^{p} [3] which consists of even and integrable functions f with mean value zero such that

$$
\int_{0}^{\pi} f^{*}(t) t^{-1 / q} d t<\infty \quad(1 / p+1 / q=1)
$$

where f^{*} is the monotone decreasing rearrangement of $|f(t)|$. It is known that $\Lambda^{p} \subset L^{p}$ ([3], p. 39). Petersen's theorem ${ }^{1)}$ is as follows:

Theorem II. $f \in \Lambda^{p} \Rightarrow F \in \Lambda^{p}$.
1.2. Let L_{0}^{p} be the space of even and integrable functions f with mean value zero and with neighbourhood of the origin where the p-th power of $|f|$ is integrable. Then Theorem I is generalized as follows:

Theorem $\mathrm{I}^{\prime} . \quad f \in L_{0}^{p} \Rightarrow F \in L^{p}$.
We introduce another space M^{p} which consists of even and integrable functions f with mean value zero, satisfying the condition

$$
\int_{0}^{\pi}|f(t)| t^{-1 / q} d t<\infty \quad(1 / p+1 / q=1)
$$

(cf. [4]). Evidently $M^{p} \supset M^{p^{\prime}}$ for $1<p<p^{\prime}$. By Hölder's inequality we get

[^0]\[

$$
\begin{equation*}
L^{p^{\prime}} \subset M^{p} \quad \text { for all } \quad p^{\prime}>p>1 \tag{4}
\end{equation*}
$$

\]

Proposition 1. $L_{0}^{p} \searrow M^{p} \not L^{p}$.
Concerning M^{p}, we have the following analogue of Theorem I.
Theorem 1. $f \in M^{p} \Rightarrow F \in M^{p} \cap L^{p}$, where F is defined by (2), (3).
As consequence of Theorem 1 and Proposition 1, we get:
Proposition 2. Converse of Theorem I does not hold, that is, there is a function f such that $F \in L^{p}$, but f does not (cf. [5]).

Proposition 3. Hardy's theorem cannot be strengthened as follows:

$$
f \in L^{p} \Rightarrow F \in L^{p} \cap M^{p} .
$$

Proposition 4. Converse of Theorem 1 does not hold, that is, there is a function f such that $F \in M^{p} \cap L^{p}$, but f does not belong to M^{p}.

If we denote by O^{p} the space of even and integrable functions f with mean value zero and satisfying the condition

$$
f(t)=O\left(t^{-1 / p}\right) \quad \text { as } \quad t \rightarrow 0
$$

then we get
Theorem 2. $f \in L^{p} \Rightarrow F \in L^{p} \cap O^{p}$.
As a corollary of Theorems 1 and 2 , we get

$$
f \in L^{p} \cap M^{p} \Rightarrow F \in L^{p} \cap M^{p} \cap O^{p} .
$$

Proposition 5. Converse of Theorem 2 does not hold.
1.3. We shall now introduce another space N^{p} which consists of functions f, even, integrable, with mean value zero and satisfying the condition that the Cauchy integral

$$
\int_{+0}^{\pi} f(t) t^{-1 / q} d t=\lim _{\bullet 10} \int_{\theta}^{\pi} f(t) t^{-1 / q} d t \quad(1 / p+1 / q=1)
$$

exists finitely. Evidently $M^{p} \subset N^{p}$. We have
Theorem 3. $f \in N^{p} \Rightarrow F \in N^{p}$.
Proposition 6. Theorem 3 cannot be strengthened as follows:

$$
f \in N^{p} \Rightarrow F \in N^{p} \cap L^{p} .
$$

Proposition 7. Converse of Theorem 3 does not hold, that is, there is a function f such that $F \in N^{p}$, but f does not.
1.4. Bellmann [6] has proved the following dual of Theorem I:

Theorem III. $f \in L^{p} \Rightarrow G \in L^{p}$, where

$$
\begin{equation*}
G(x) \sim \sum_{n=1}^{\infty} B_{n} \cos n x, \quad B_{n}=\sum_{k=n}^{\infty}\left(a_{k} / k\right) \tag{5}
\end{equation*}
$$

We can prove the dual of Theorems 1 and 2, that is:
Theorem 4. $f \in M^{p} \Rightarrow G \in L^{p} \cap M^{p}$,
Theorem 5. $f \in L^{p} \Rightarrow G \in L^{p} \cap O^{p}$.
Combining Theorem 4 and Proposition 1, we get:
Proposition 8. Converse of Theorem III does not hold.

Proposition 9. Converses of Theorems 4 and 5 do not hold.
Proposition 10. Dual of Theorem 3 does not hold, that is, there is a function f such that $f \in N^{p}$, but G does not.
1.5. We put $F=T f$, then we get, collecting above results,

$$
L_{0}^{p} \xrightarrow{T} L^{p} \xrightarrow{T} L^{p} \cap O^{p}, \quad M^{p} \xrightarrow{T} L^{p} \cap M^{p} \xrightarrow{T} L^{p} \cap M^{p} \cap O^{p},
$$

where $A \xrightarrow{T} B$ means that T maps the set A into a proper subset of B. Further, by T^{n} we denote the n-th iteration of T, then we get

Theorem 6. For $f \in L_{0}^{p} \cup M^{p}, \lim _{n \rightarrow \infty}\left\|T^{n} f\right\|_{L^{p}}=0$ or ∞ according as $a_{1}(f)=0$ or $a_{1}(f) \neq 0$. Therefore, if we put $S_{1}=\left(f ; f \in L_{0}^{p} \cup M^{p}\right.$, $\left.a_{1}(f)=0\right)$ and $S_{2}=\left(L_{0}^{p} \cup M^{p}\right)-S_{1}$, then $\lim _{n \rightarrow \infty} T^{n} S_{1}=(0)$, where (0) denotes the set of almost everywhere vanishing functions and $\lim _{n \rightarrow \infty}\left\|T^{n} f\right\|_{L^{p}}$ $=\infty$ for every $f \in S_{2}$.
2. Proof of Proposition 1. Let $f_{1}(t)$ be the even and periodic function such that

$$
\begin{equation*}
f_{1}(t)=t^{-1 / p}\left(\log \frac{2 \pi}{t}\right)^{-1}-A_{1} \quad \text { on } \quad(0, \pi) \tag{6}
\end{equation*}
$$

where the constant A_{1} is taken as the mean value of f_{1} is zero. Then $f_{1} \in L^{p}$, but not in M^{p}. On the other hand, we take the even and periodic function f_{2} defined on ($0, \pi$) as follows:

$$
\begin{align*}
f_{2}(t) & =2^{k} k^{-2}-A_{2} \text { on }\left(k^{-1}, k^{-1}+2^{-k}\right) \quad(k=1,2, \cdots) \tag{7}\\
& =-A_{2} \text { otherwise on }(0, \pi)
\end{align*}
$$

where the constant A_{2} is taken as the mean value of f_{2} vanishes, then $f_{2} \in M^{p}$, but not in L_{0}^{p}. Thus Proposition 1 is proved.

Furthermore, f_{2} does not belong to any $L^{p^{\prime \prime}}\left(1<p^{\prime \prime}<p\right)$, and then

$$
L^{p^{\prime \prime}} \mp M^{p} \quad \text { for any } p^{\prime \prime}, \quad 1<p^{\prime \prime}<p
$$

3. Proof of Theorem 1. Hardy [1] has proved that

$$
\begin{gather*}
F^{*}(x)=\int_{x}^{\pi} f(t) \cot \frac{1}{2} t d t \sim \sum_{n=1}^{\infty} A_{n}^{*} \cos n x, \tag{8}\\
A_{n}^{*}=\frac{1}{n} \sum_{k=1}^{n-1} a_{k}+\frac{1}{2 n} a_{n} . \tag{9}
\end{gather*}
$$

Since

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} a_{n} \cos n x \in L^{p^{\prime}} \quad \text { for any } p^{\prime}>1 \tag{10}
\end{equation*}
$$

it is sufficient to show that $F^{*} \in L^{p} \cap M^{p}$ when $f \in M^{p}$. By Minkowski's inequality,

$$
\left(\int_{0}^{\pi}\left|F^{*}(x)\right|^{p} d x\right)^{1 / p} \leqq A \int_{0}^{\pi}|f(u)| u^{-1 / q} d u
$$

which is finite by $f \in M^{p}$. Hence $F^{*} \in L^{p}$. Further

$$
\int_{0}^{\pi}\left|F^{*}(x)\right| x^{-1 / q} d x \leqq A \int_{0}^{\pi}|f(u)| u^{-1 / q} d u
$$

Then $F^{*} \in M^{p}$ and the theorem is proved.
4. Proof of Proposition 3. It is sufficient to prove that there is a function $f \in L^{p}$ such that F does not belong to M^{p}. The function f_{1}, defined by (6), belongs to L^{p}. We define F_{1}^{*} by (8), using f_{1} instead of f, then

$$
\int_{0}^{\pi} F_{1}^{*}(x) x^{-1 / q} d x \geqq A \int_{0}^{\pi} x^{-1 / q} d x \int_{x}^{\pi} t^{-1-1 / p}\left(\log \frac{2 \pi}{t}\right)^{-1} d t=\infty .
$$

Hence F_{1}^{*} does not belong to M^{p} and then, by (10), F_{1} does not also. Thus f_{1} is a function satisfying the required condition.
5. Proof of Proposition 4. We put $t_{n}=\frac{1}{2}\left(\frac{1}{\log n}+\frac{1}{\log (n+1)}\right)$ ($n=2,3, \ldots$) and consider the even and periodic function f_{3} defined by

$$
\begin{align*}
f_{3}(t) & =(\log n)^{1 / p} \text { in }\left(1 / \log (n+1), t_{n}\right) \\
& =-(\log n)^{1 / p} \text { in }\left(t_{n}, 1 / \log n\right) \quad(n=2,3, \cdots) \tag{11}\\
& =0 \text { in }(1 / \log 2, \pi)
\end{align*}
$$

Then f_{3} is evidently integrable and $\int_{0}^{\pi}\left|f_{3}(t)\right| t^{-1 / q} d t=\infty$, that is, f_{3} does not belong to M^{p}. But

$$
\int_{0}^{\pi} t^{-1 / q} d t\left|\int_{t}^{\pi} f_{3}(u) \cot \frac{1}{2} u d u\right|<\infty, \quad \int_{0}^{\pi}\left|\int_{t}^{\pi} f_{3}(u) \cot \frac{1}{2} u d u\right|^{p} d t<\infty,
$$

and then F_{3}^{*} defined by f_{3}, belongs to $L^{p} \cap M^{p}$.
6. Proof of Theorem 3. We have

$$
\int_{0}^{\pi} F^{*}(x) x^{-1 / q} d x=A \int_{0}^{\pi} f(t) \cot \frac{1}{2} t \cdot t^{1 / p} d t-A \varepsilon^{1 / p} \int_{0}^{\pi} f(t) \cot \frac{1}{2} t d t .
$$

Theorem is proved when

$$
\begin{equation*}
\lim _{t \rightarrow 0} \varepsilon^{1 / p} \int_{\theta}^{\pi} f(t) t^{-1} d t=0 \tag{12}
\end{equation*}
$$

Since $f \in M^{p}$, there is an $\eta>0$, for any $\delta>0$, such that

$$
\begin{equation*}
\left|\int_{0}^{\iota^{\prime}} f(t) t^{-1 / q} d t\right|<\delta \quad \text { for any } \quad \varepsilon<\varepsilon^{\prime}<\eta \tag{13}
\end{equation*}
$$

By the mean value theorem and (13)

$$
\underset{t \rightarrow 0}{\limsup }\left|\varepsilon^{1 / p} \int_{\varepsilon}^{\pi} f(t) t^{-1} d t\right| \leqq \limsup _{t \rightarrow 0}\left|\int_{a}^{\varepsilon^{\prime}} f(t) t^{-1 / q} d t\right| \leqq \delta .
$$

Since δ is arbitrary, we get the required relation (12).
7. Proof of Proposition 6. We define the even and periodic function f_{4} by the equations

$$
\begin{align*}
f_{4}(t) & =(-1)^{n}(\log k)^{1 / p}-A_{4} \text { on } \quad(1 / \log k, 1 / \log (k-1)) \\
& \text { for } 2^{n}<k \leqq 2^{n+1} \quad(n=2,3, \cdots) \tag{14}\\
& =-A_{4} \quad \text { on } \quad(1 / 2 \log 2, \pi)
\end{align*}
$$

where the constant A_{4} is taken as the mean value of f_{4} vanishes. Then
f_{4} is integrable and belongs to N^{p}. If we define F_{4}^{*} by (8) using f_{4}, instead of f, then F_{4}^{*} does not belong to L^{p}.
8. Proof of Proposition 7. We define the even and periodic function f_{5} by the equations

$$
\begin{align*}
f_{5}(t) & =2^{k} k^{-2} \text { on }\left(n_{k}^{-1}, n_{k}^{-1}+2^{-k}\right) \\
& =-2^{k} k^{-2} \text { on }\left(n_{k}^{-1}+2^{-k}, n_{k}^{-1}+2 \cdot 2^{-k}\right) \quad(k=2,3, \cdots) \tag{15}\\
& =0, \quad \text { otherwise on }(0, \pi)
\end{align*}
$$

where $n_{k}=k^{2 q}(k=2,3, \cdots)$, then f_{5} is integrable, but does not belong to N^{p} and F_{5}^{*}, defined by f_{5}, belongs to N^{p}. The function f_{5} has the required property.
9. Proof of Theorem 4. By the formal calculation,

$$
\begin{equation*}
G(t) \sim-\frac{1}{2} \sum_{k=1}^{\infty} \frac{a_{k}}{k}+\frac{1}{2} \cot \frac{1}{2} t \sum_{k=1}^{\infty} \frac{a_{k}}{k} \sin k t+\sum_{k=1}^{\infty} \frac{a_{k}}{2 k} \cos k t . \tag{16}
\end{equation*}
$$

If we denote by $H(t)$ the last term of (16), then H belongs to any L^{p} ($p>1$) by (10). The term before the last of (16) is

$$
\begin{equation*}
K(t)=\frac{1}{2} \cot \frac{1}{2} t \int_{0}^{t} f(u) d u \tag{17}
\end{equation*}
$$

which is integrable. We shall now show that the function $H(t)+K(t)$ has the same Fourier coefficients as $G(t)$, except for the constant term. The n-th Fourier coefficient of K is

$$
\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos n t d t \int_{0}^{t} f(u) d u=\frac{2}{\pi} \int_{0}^{\pi} f(u) d u \int_{u}^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos n t d t
$$

where

$$
\int_{u}^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos n t d t=-\log \left(\sin \frac{1}{2} u\right)-\int_{u}^{\pi} \tilde{D}_{n}^{*}(t) d t
$$

\tilde{D}_{n}^{*} being the n-th modified conjugate Dirichlet kernel [7]. Thus we have, by elementary estimation,

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} f(u) d u \int_{u}^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi} f(u)\left(\sum_{k=n}^{\infty} * k^{-1} \cos k u\right) d u \tag{18}
\end{equation*}
$$ where Σ^{*} denotes that the first term is halfed in the summation. Since $f(u) \log \frac{2 \pi}{u}$ is integrable by the assumption and the series $\left(\log \frac{2 \pi}{u}\right)^{-1} \sum_{k=1}^{\infty} k^{-1} \cos k u$ is boundedly convergent, we can interchange the order of summation and integration on the right side of (18). Combining this with the n-th Fourier coefficient of H, we get the required result.

Therefore, in order to prove the theorem, it is enough to show that $K \in L^{p} \cap M^{p}$, where K is defined by (17). Now

$$
\int_{0}^{\pi} \frac{d t}{t^{1+1 / q}} \int_{0}^{t}|f(u)| d u=\int_{0}^{\pi}|f(u)| d u \int_{u}^{\pi} \frac{d t}{t^{1+1 / q}} \leqq A \int_{0}^{\pi}|f(u)| u^{-1 / q} d u,
$$

that is, $f \in M^{p}$. On the other hand, by Minkowski's inequality,

$$
\left(\int_{0}^{\pi}\left|t^{-1} \int_{0}^{t} f(u) d u\right|^{p} d t\right)^{1 / p} \leqq \int_{0}^{\pi} d u\left(\int_{u}^{\pi}|f(u)|^{p} t^{-p} d t\right)^{1 / p}=A \int_{0}^{\pi}|f(u)| u^{-1 / q} d u .
$$

Therefore $G \in L^{p}$. Thus the theorem is proved.
10. Proof of Propositions 5 and 9. The function f_{3} defined by (11) is integrable, but does not belong to both L^{p} and $M^{p} . t^{-1} \int_{0}^{t} f_{3}(u) d u$ is integrable and then G_{3}, defined by f_{3}, is equal to $H_{3}+K_{3}$, except for addition of some constant. Since

$$
\int_{0}^{\pi} t^{-1 / q} d t\left|t^{-1} \int_{0}^{t} f_{3}(u) d u\right|<\infty \quad \text { and } \quad \int_{0}^{\pi}\left|t^{-1} \int_{0}^{t} f_{3}(u) d u\right|^{p} d t<\infty
$$

we get $G_{3} \in L^{p} \cap M^{p}$. Evidently $G_{3} \in O^{p}$. Thus f_{3} gives the solution of Proposition 9. Proposition 5 is proved using the same function f_{3}.
11. Proof of Proposition 10. We shall define the even and periodic function f_{6} by the equations

$$
\begin{aligned}
f_{6}(t) & =h_{k} \text { on }\left(n_{k}^{-1}, n_{k}^{-1}+m_{k}^{-1}\right) \\
& =-h_{k} \text { on }\left(n_{k}^{-1}+m_{k}^{-1}, n_{k}^{-1}+2 m_{k}^{-1}\right) \quad(k=1,2, \cdots) \\
& =0 \quad \text { otherwise in }(0, \pi),
\end{aligned}
$$

where $h_{k}=k^{q}(\log k)^{q-1} /(\log \log k)^{2}, m_{4}=4 k^{q+1}(\log k)^{q}$ and $n_{k}=k^{q}(\log k)^{q}$. Then we can see that f_{6} is integrable, $f_{6} \in N^{p}$ and G_{8}, defined by f_{6}, does not belong to N^{p}, using that $f_{6}(u) \log \frac{2 \pi}{u}$ is integrable.

References

[1] G. H. Hardy: Notes on some points in the integral calculus. LXVI. Messenger of Mathematics, 58, 50-52 (1928).
[2] G. M. Petersen: Means of Fourier constants. Trans. Royal Soc. Canada, XLV, Series III, 32-38 (1951).
[3] G. G. Lorentz: Some new functional spaces. Ann. Math., 51, 37-55 (1950).
[4] R. P. Boas: Integrability theorems for trigonometric transforms. Ergebrisse der Math. und ihrer Grenzgebiete, 38 (1967).
[5] A. H. Siddiqi: Dissertation. Arigarh, India (1967).
[6] R. Bellmann: A note on a theorem of Hardy on Fourier constants. Bull. Amer. Math. Soc., 50, 741-744 (1944).
[7] A. Zygmund: Trigonometric Series. Cambridge University Press (1959).

[^0]: 1) Petersen has proved similar theorems for the other Lorentz spaces.
