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1. Introduction and theorems. 1.1. Let fbe an even and inte-
grable function with period 2z and with mean value zero and let its
Fourier series be

( 1 f(x) an cos nx.

We suppose always lpoo. By L, we denote the space of such
functions whose p-th powers are integrable. We put

(2) An=--I a (n--l, 2, ...),

then Hardy [1] proved that there is an integrable function F such that

3 F(x) A cos nx.

Further he [1] proved the following
Theorem I. f e LpF e Lp.

Petersen [2] has proved that the space L, in Theorem I can be
replaced by the Lorentz space A [3] which consists of even and inte-
grable functions f with mean value zero such that

1),

where f* is the monotone decreasing rearrangement of ]f(t)]. It is
known that pcL ([3], p. 39). Petersen’s theorem" is as follows:

Theorem II. f e A,F e A.
1.2. Le$ L be the space of even and integrable func$ions f with

mean value zero and with neighbourhood of the origin where the p-h
power of ]f is integrable. Then Theorem I is generalized as follows"

Theorem
We introduce another space Mp which consists of even and inte-

grable functions f with mean value zero, satisfying the condition

(el. [4]). Nvidently MDM’ for 1<<’. By H61der’s inequality
we get

1) Petersen has proved similar theorems for the other Lorentz spaces.
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(4) Lv’cM for all p’pl.

Proposition 1. L0 2)MP :Lp.
Concerning M, we have the following analogue of Theorem I.
Theorem 1. f e MpF e Mp ( L, where F is defined by (2), (3).
As consequence of Theorem 1 and Proposition 1, we get"
Proposition 2. Converse of Theorem I does not hold, that is,

there is a function f such that F e L;, but f does not (cf. [5]).
Proposition 3. Hardy’s theorem cannot be strengthened as fol-

lows:
f e LF e Lp ( M.

Proposition 4. Converse of Theorem 1 does not hold, that is,
there is a unction f such that F .e M L, but f does not belong to
Mp

If we denote by O, the space of even and integrable functions f
with mean value zero and satisfying the condition

f(t)= O(t-/) as t-0,
then we get

Theorem 2. f e LF eLO.
As a corollary of Theorems 1 and 2, we get

f e Lp MF e L M 0.
Proposition 5. Converse of Theorem 2 does not hold.
1o3o We shall now introduce another space N which consists of

functions f, even, integrable, with mean value zero and satisfying
the condition that the Cauchy integral

f(t)t-/dt-lim f(t)t-/dt (i/p+ 1/q=l)
+0 0

exists finitely. Evidently M N. We have
Theorem 3. f e NpF N.
Proposition 6. Theorem 3 cannot be strengthened as follows:

f e NF e N L.
Proposition 7. Converse of Theorem 3 does not hold, that is,

there is a function f such that F e N, but f does not.
1.4. Bellmann [6] has proved the following dual of Theorem I:
Theorem III. f e LpG e L, where

( 5 G(x), Bn cos nx, Bn- ] (a/k).
=I /=

We can prove the dual of Theorems 1 and 2, that is"
Theorem 4. f e MG e L (M
Theorem 5. f e LpG e L O.
Combining Theorem 4 and Proposition 1, we get"
Proposition 8. Converse of Theorem III does not hold.



420 M. IZUMI and S. IZUMI [Vol. 44,

Proposition 9. Converses of Theorems 4 and 5 do not hold.
Proposition 10o Dual of Theorem 3 does not hold, that is, there

is a function f such that f e N, but G does not.
1.5. We put F-Tf, then we get, collecting above results,

L0 r L r
LfO, M r LM--r LMO

whereAB means that T maps the set A into a proper subset of B.
Further, by T we denote the n-th iteration of T, then we get

Theorem 6. For f e L M, lim I Tnfi =0 or according

as a(f) 0 or ax(f) 0. Therefore, if we put S=(f f e L UM,
a(f)=O) and S=(L M)-S, then lim TnSx=(O), where (0) denotes

the set of almost everywhere vanishing functions and lim l Tnf IL
for every f e S.
2. Proof of Proposition 1. Let A(t) be the even and periodic

function such that

(6) f(t)=t-/ log -A on (0,)

where he eonsan A is taken as the mean value of A is ero. hen

A L, bu no in M. On the other hand, we take he even and
eriodie funeion f defined on (0, ) as follows"

(7) A(t)=--A on (-,-+-) (=1,,...)
=-A oherwise on (0, ),

where the constant A is taken as the mean value o f vanishes, then

f e M,, but not in L. Thus Proposition 1 is proved.
Furthermore, f does not belong to any L," (1 <p"<p), and then

L"M for any p", l<p"<p.

3. Proof of Theorem I. Hardy [I] has proved that

i td Acos nz,( 8 F*(x) f() cot

(9) A=-- + 1
n = an.

Since

(10) n-Xa cos nx e L’ for any p’>l,

it is sufficient to show that F* e L M when f e M. By Minkowski’s
inequality,

[F*(x) dx <=A If(u) u-/qdu

which is finite by f e M. Hence F*e L,. Further
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IF*(x)]x-/qdx_A If(u) lu-/qdu.

Then F* e M and the theorem is proved.
4. Proof of Proposition :. It is sufficient to prove that there is

a function f e L such that F does not belong to M. The function
f, defined by (6), belongs to L. We define F* by (8), using f instead
of f, then

"()-/ A -/ t--/ log gt .
Henee N does not belong to M and then, by (10), N does no also.
hus f is a function satisfying he required condition.

_1( 1
log log(n1 )+1)5. Proof of Proposition 4. We put t- +

(n= 2, 3, ...) and consider the even and periodic function f defined by
f(t)- (log n)/ in (1/log (n+l), tn)

(11) =--(logn)/ in (t,l/logn) (n--2,3,...)
=0 in (1/log2, ).

hen f is evidently integrable and If(t) lt-/’dt= , ghat is, f does
no belong to M. Bu

2 2
and then F defined by f, belongs to L, M.

6. Proof of Theorem . We have
1 t.t/gt-As/ f(t) cog 1 t gt.N*()-/g A f(t) eo

heorem is roved when

(12) lira s/ f(t)t-dt O.
0

Since f e M, there is an 0, for any 0, such that

(1) f(t)t-/gt <8 for any s < s’<.
By he mean value theorem and (1)

lira su s/ f(t)t-gt lira su f(t)t-/ gt .
Since is arbitrary, we ge he required relation (12).

7. Proof of Proposition 6. We define the even and periodic
function f by the equations

f(t)-(-1)(log k)/-A on (1/log , 1/log(-1))
(14) for 2<N2* (-2,8,...)

=-A on (1/21og2,)
where he constant A is taken as he mean value of f vanishes. hen
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f is integrable and belongs to N. If we define F* by (8) using f,
instead of f, then F* does not belong to L.

8o Proof of Proposition 7. We define the even and periodic
function f by the equations

f(t)--2k- on (n;, n+2-)
(15) 2k- on (n; + 2-, n; + 2.2-) (k= 2, 3, ...)

=0, otherwise on (0,
where n= kq (k-2, 3, ...), then f is integrable, but does not belong
to N and F, defined by f, belongs to N. The function f has the
required property.

9. Proof of Theorem 4. By the formal calculation,

1 1 1 a sinkt+ a coskt.(16) G(t)- +cott 2
If we denote by H(t) the last term of (16), then H belongs to any L
(p 1) by (10). The term before the last of (16) is

(17) K(t)-
which is integrable. We shall now show tha the function H(t)+ K(t)
has the same Fourier coefficients as G(t), except or the constant
term. The n-th Fourier coefficient of K is

2 1 cot 1 t cos nt dt f(u)du- f(u)du cot t cos nt dt
02 2 2 2

where
1 cot 1 t cos nt dr- log sin u D(t)dt,

D being the n-th modified conjugate Dirichlet kernel [7]. Thus we
have, by elementary estimation,

(18) f()d 1 cot 1 t cos t dt =-- f() * - cos du,

where * denotes that the first term is halfed in the summation.

Since f(u)log 2 is integrable by the assumption and the series
U- cos is boundedly eonvergent, we can interchangelog

the order of summation and integration on the righ side of (18).
Combining this with the -th ourier eoeNeient of H, we get the
required result.

herefore, in order to prove the theorem, it is enough to show
that K e L M, where K is defined by (17). Now

gt dt <A f() -/d,o-t
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that is, f e M,. On the other hand, by Minkowski’s inequality,

It- f(u)duldt <= du If(u) lt-dt =A If(u)

Therefore G e L. Thus the theorem is proved.
10. Proof of Propositions 5 and 9. The function f defined by

(11) is integrable, but does not belong to both L and

is integrable and then G, defined by f, is equal to H+K, except for
addition of some constant. Since

t-/dt t- f(u)du < c and t- f(u)du dt <c
we get G e L M. Evidently G e 0,. Thus f gives the solution of
Proposition 9. Proposition 5 is proved using the same function f.

11. Proof of Proposition 10. We shall define the even and
periodic function f by the equations

f(t)-h on (n;, n;+m;)
=-h on (n;l+m;1,n;+2m;) (k-1,2, ...)

0 otherwise in (0, ),
where h=kq(log k)q-/(log log k), m4-4kq/(log k)q and n-kq(log k)q.
Then we can see that f is integrable, f e N and G, defined by f,

does not belong to N,, using that f(u) log 27 is integrable.
u
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