94. On a Hardy's Theorem

By Masako IZUMI and Shin-ichi IZUMI Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Zyoiti SUETUNA, M. J. A., June 12, 1968)

1. Introduction and theorems. 1.1. Let f be an even and integrable function with period 2π and with mean value zero and let its Fourier series be

(1)
$$f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx.$$

We suppose always $1 . By <math>L^p$ we denote the space of such functions whose *p*-th powers are integrable. We put

(2)
$$A_n = \frac{1}{n} \sum_{k=1}^n a_k$$
 $(n=1, 2, ...),$

then Hardy [1] proved that there is an integrable function F such that

(3)
$$F(x) \sim \sum_{n=1}^{\infty} A_n \cos nx.$$

Further he [1] proved the following

Theorem I. $f \in L^p \Rightarrow F \in L^p$.

Petersen [2] has proved that the space L^p in Theorem I can be replaced by the Lorentz space Λ^p [3] which consists of even and integrable functions f with mean value zero such that

$$\int_{0}^{\pi} f^{*}(t)t^{-1/q}dt < \infty \qquad (1/p+1/q=1),$$

where f^* is the monotone decreasing rearrangement of |f(t)|. It is known that $\Lambda^p \subset L^p$ ([3], p. 39). Petersen's theorem¹⁾ is as follows:

Theorem II. $f \in \Lambda^p \Rightarrow F \in \Lambda^p$.

1.2. Let L_0^p be the space of even and integrable functions f with mean value zero and with neighbourhood of the origin where the p-th power of |f| is integrable. Then Theorem I is generalized as follows:

Theorem I'. $f \in L_0^p \Rightarrow F \in L^p$.

We introduce another space M^p which consists of even and integrable functions f with mean value zero, satisfying the condition

$$\int_{0}^{\pi} |f(t)| t^{-1/q} dt < \infty \qquad (1/p + 1/q = 1)$$

(cf. [4]). Evidently $M^p \supset M^{p'}$ for 1 . By Hölder's inequality we get

¹⁾ Petersen has proved similar theorems for the other Lorentz spaces.

Hardy's Theorem

No. 6]

(4)
$$L^{p'} \subset M^p$$
 for all $p' > p > 1$.

Proposition 1. $L_0^p \oplus M^p \oplus L^p$.

Concerning M^p , we have the following analogue of Theorem I. Theorem 1. $f \in M^p \Rightarrow F \in M^p \cap L^p$, where F is defined by (2), (3).

As consequence of Theorem 1 and Proposition 1, we get:

Proposition 2. Converse of Theorem I does not hold, that is, there is a function f such that $F \in L^p$, but f does not (cf. [5]).

Proposition 3. Hardy's theorem cannot be strengthened as follows:

$$f \in L^p \Rightarrow F \in L^p \cap M^p$$
.

Proposition 4. Converse of Theorem 1 does not hold, that is, there is a function f such that $F \in M^p \cap L^p$, but f does not belong to M^p .

If we denote by O^p the space of even and integrable functions f with mean value zero and satisfying the condition

$$f(t) = O(t^{-1/p})$$
 as $t \rightarrow 0$

then we get

Theorem 2. $f \in L^p \Rightarrow F \in L^p \cap O^p$. As a corollary of Theorems 1 and 2, we get $f \in L^p \cap M^p \Rightarrow F \in L^p \cap M^p \cap O^p$.

Proposition 5. Converse of Theorem 2 does not hold.

1.3. We shall now introduce another space N^p which consists of functions f, even, integrable, with mean value zero and satisfying the condition that the Cauchy integral

$$\int_{+0}^{\pi} f(t)t^{-1/q}dt = \lim_{a \downarrow 0} \int_{a}^{\pi} f(t)t^{-1/q}dt \qquad (1/p+1/q=1)$$

exists finitely. Evidently $M^p \subset N^p$. We have

Theorem 3. $f \in N^p \Rightarrow F \in N^p$.

Proposition 6. Theorem 3 cannot be strengthened as follows: $f \in N^p \Rightarrow F \in N^p \cap L^p.$

Proposition 7. Converse of Theorem 3 does not hold, that is, there is a function f such that $F \in N^p$, but f does not.

1.4. Bellmann [6] has proved the following dual of Theorem I: Theorem III. $f \in L^p \Rightarrow G \in L^p$, where

(5)
$$G(x) \sim \sum_{n=1}^{\infty} B_n \cos nx, \quad B_n = \sum_{k=n}^{\infty} (a_k/k).$$

We can prove the dual of Theorems 1 and 2, that is:
Theorem 4. $f \in M^p \Rightarrow G \in L^p \cap M^p$,
Theorem 5. $f \in L^p \Rightarrow G \in L^p \cap O^p$.
Combining Theorem 4 and Proposition 1, we get:
Proposition 8. Converse of Theorem III does not hold.

Proposition 9. Converses of Theorems 4 and 5 do not hold.

Proposition 10. Dual of Theorem 3 does not hold, that is, there is a function f such that $f \in N^p$, but G does not.

1.5. We put F = Tf, then we get, collecting above results,

 $L^p_0 \xrightarrow{T} L^p \xrightarrow{T} L^p \cap O^p, \quad M^p \xrightarrow{T} L^p \cap M^p \xrightarrow{T} L^p \cap M^p \cap O^p,$

where $A \xrightarrow{T} B$ means that T maps the set A into a proper subset of B. Further, by T^n we denote the *n*-th iteration of T, then we get

Theorem 6. For $f \in L_0^p \cup M^p$, $\lim_{n \to \infty} ||T^n f||_{L^p} = 0$ or ∞ according as $a_1(f) = 0$ or $a_1(f) \neq 0$. Therefore, if we put $S_1 = (f; f \in L_0^p \cup M^p, a_1(f) = 0)$ and $S_2 = (L_0^p \cup M^p) - S_1$, then $\lim_{n \to \infty} T^n S_1 = (0)$, where (0) denotes the set of almost everywhere vanishing functions and $\lim_{n \to \infty} ||T^n f||_{L^p} = \infty$ for every $f \in S_2$.

2. Proof of Proposition 1. Let $f_1(t)$ be the even and periodic function such that

(6)
$$f_1(t) = t^{-1/p} \left(\log \frac{2\pi}{t} \right)^{-1} - A_1 \text{ on } (0, \pi)$$

where the constant A_1 is taken as the mean value of f_1 is zero. Then $f_1 \in L^p$, but not in M^p . On the other hand, we take the even and periodic function f_2 defined on $(0, \pi)$ as follows:

(7)
$$f_2(t) = 2^k k^{-2} - A_2 \text{ on } (k^{-1}, k^{-1} + 2^{-k}) \quad (k = 1, 2, \cdots)$$

= $-A_2$ otherwise on $(0, \pi)$,

where the constant A_2 is taken as the mean value of f_2 vanishes, then $f_2 \in M^p$, but not in L_0^p . Thus Proposition 1 is proved.

Furthermore, f_2 does not belong to any $L^{p''}$ (1 < p'' < p), and then

 $L^{p^{\prime\prime}}
ightarrow M^p$ for any $p^{\prime\prime}$, $1 < p^{\prime\prime} < p$.

3. Proof of Theorem 1. Hardy [1] has proved that

(8)
$$F^*(x) = \int_x^{\pi} f(t) \cot \frac{1}{2} t \, dt \sim \sum_{n=1}^{\infty} A_n^* \cos nx,$$

(9)
$$A_n^* = \frac{1}{n} \sum_{k=1}^{n-1} a_k + \frac{1}{2n} a_n.$$

Since

(10)
$$\sum_{n=1}^{\infty} n^{-1}a_n \cos nx \in L^{p'} \text{ for any } p' > 1,$$

it is sufficient to show that $F^* \in L^p \cap M^p$ when $f \in M^p$. By Minkowski's inequality,

$$\left(\int_{0}^{\pi} |F^{*}(x)|^{p} dx\right)^{1/p} \leq A \int_{0}^{\pi} |f(u)| u^{-1/q} du$$

which is finite by $f \in M^p$. Hence $F^* \in L^p$. Further

Hardy's Theorem

$$\int_{0}^{\pi} |F^{*}(x)| x^{-1/q} dx \leq A \int_{0}^{\pi} |f(u)| u^{-1/q} du.$$

Then $F^* \in M^p$ and the theorem is proved.

4. Proof of Proposition 3. It is sufficient to prove that there is a function $f \in L^p$ such that F does not belong to M^p . The function f_1 , defined by (6), belongs to L^p . We define F_1^* by (8), using f_1 instead of f, then

$$\int_{0}^{\pi} F_{1}^{*}(x) x^{-1/q} dx \ge A \int_{0}^{\pi} x^{-1/q} dx \int_{x}^{\pi} t^{-1-1/p} \left(\log \frac{2\pi}{t} \right)^{-1} dt = \infty.$$

Hence F_1^* does not belong to M^p and then, by (10), F_1 does not also. Thus f_1 is a function satisfying the required condition.

5. Proof of Proposition 4. We put $t_n = \frac{1}{2} \left(\frac{1}{\log n} + \frac{1}{\log (n+1)} \right)$ (n=2,3,...) and consider the even and periodic function f_s defined by

$$(n=2, 3, \cdots)$$
 and consider the even and periodic function f_3 defined to
 $f_3(t) = (\log n)^{1/p}$ in $(1/\log (n+1), t_n)$
(11)
 $(\log n)^{1/p}$ in $(t-1)(\log n)$

(11)
$$= -(\log n)^{1/p} \text{ in } (t_n, 1/\log n) \qquad (n=2, 3, \cdots) \\= 0 \text{ in } (1/\log 2, \pi).$$

Then f_3 is evidently integrable and $\int_0^{\pi} |f_3(t)| t^{-1/q} dt = \infty$, that is, f_3 does not belong to M^p . But

$$\int_{0}^{\pi} t^{-1/q} dt \left| \int_{t}^{\pi} f_{3}(u) \cot \frac{1}{2} u \, du \right| < \infty, \quad \int_{0}^{\pi} \left| \int_{t}^{\pi} f_{3}(u) \cot \frac{1}{2} u \, du \right|^{p} dt < \infty,$$

and then F_s^* defined by f_s , belongs to $L^p \cap M^p$.

6. Proof of Theorem 3. We have $\int_{\epsilon}^{\pi} F^{*}(x) x^{-1/q} dx = A \int_{\epsilon}^{\pi} f(t) \cot \frac{1}{2} t \cdot t^{1/p} dt - A \varepsilon^{1/p} \int_{\epsilon}^{\pi} f(t) \cot \frac{1}{2} t dt.$

Theorem is proved when

(12)
$$\lim_{\epsilon \to 0} \varepsilon^{1/p} \int_{\epsilon}^{\pi} f(t) t^{-1} dt = 0.$$

Since $f \in M^p$, there is an $\eta > 0$, for any $\delta > 0$, such that

(13)
$$\left|\int_{t}^{t} f(t)t^{-1/q}dt\right| < \delta \quad \text{for any} \quad \varepsilon < \varepsilon' < \eta$$

By the mean value theorem and (13)

$$\limsup_{\epsilon \to 0} \left| \varepsilon^{1/p} \int_{\epsilon}^{\pi} f(t) t^{-1} dt \right| \leq \limsup_{\epsilon \to 0} \left| \int_{\epsilon}^{\epsilon'} f(t) t^{-1/q} dt \right| \leq \delta.$$

Since δ is arbitrary, we get the required relation (12).

7. Proof of Proposition 6. We define the even and periodic function f_4 by the equations

(14)
$$\begin{aligned} f_4(t) = (-1)^n (\log k)^{1/p} - A_4 & \text{on} \quad (1/\log k, 1/\log (k-1)) \\ & \text{for} \quad 2^n < k \leq 2^{n+1} \quad (n=2, 3, \cdots) \\ & = -A_4 \quad \text{on} \quad (1/2 \log 2, \pi) \end{aligned}$$

where the constant A_4 is taken as the mean value of f_4 vanishes. Then

 f_4 is integrable and belongs to N^p . If we define F_4^* by (8) using f_4 , instead of f, then F_4^* does not belong to L^p .

8. Proof of Proposition 7. We define the even and periodic function f_5 by the equations

(15)
$$\begin{array}{rl} f_5(t) = 2^k k^{-2} & \text{on} & (n_k^{-1}, n_k^{-1} + 2^{-k}) \\ = -2^k k^{-2} & \text{on} & (n_k^{-1} + 2^{-k}, n_k^{-1} + 2 \cdot 2^{-k}) \\ = 0, & \text{otherwise on} & (0, \pi) \end{array}$$

where $n_k = k^{2q}$ $(k=2, 3, \cdots)$, then f_5 is integrable, but does not belong to N^p and F_5^* , defined by f_5 , belongs to N^p . The function f_5 has the required property.

9. Proof of Theorem 4. By the formal calculation,

(16)
$$G(t) \sim -\frac{1}{2} \sum_{k=1}^{\infty} \frac{a_k}{k} + \frac{1}{2} \cot \frac{1}{2} t \sum_{k=1}^{\infty} \frac{a_k}{k} \sin kt + \sum_{k=1}^{\infty} \frac{a_k}{2k} \cos kt.$$

If we denote by H(t) the last term of (16), then H belongs to any L^{p} (p>1) by (10). The term before the last of (16) is

(17)
$$K(t) = \frac{1}{2} \cot \frac{1}{2} t \int_0^t f(u) du$$

which is integrable. We shall now show that the function H(t) + K(t) has the same Fourier coefficients as G(t), except for the constant term. The *n*-th Fourier coefficient of K is

$$\frac{2}{\pi} \int_0^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos nt \, dt \int_0^t f(u) du = \frac{2}{\pi} \int_0^{\pi} f(u) du \int_u^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos nt \, dt$$

where

$$\int_{u}^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos nt \, dt = -\log\left(\sin \frac{1}{2} u\right) - \int_{u}^{\pi} \tilde{D}_{n}^{*}(t) dt,$$

 \tilde{D}_n^* being the *n*-th modified conjugate Dirichlet kernel [7]. Thus we have, by elementary estimation,

(18)
$$\frac{2}{\pi} \int_0^{\pi} f(u) du \int_u^{\pi} \frac{1}{2} \cot \frac{1}{2} t \cos nt \, dt = \frac{2}{\pi} \int_0^{\pi} f(u) \left(\sum_{k=n}^{\infty} k^{-1} \cos ku \right) du,$$

where \sum^* denotes that the first term is halfed in the summation. Since $f(u) \log \frac{2\pi}{u}$ is integrable by the assumption and the series $\left(\log \frac{2\pi}{u}\right)^{-1} \sum_{k=1}^{\infty} k^{-1} \cos ku$ is boundedly convergent, we can interchange the order of summation and integration on the right side of (18). Combining this with the *n*-th Fourier coefficient of *H*, we get the required result.

Therefore, in order to prove the theorem, it is enough to show that $K \in L^p \cap M^p$, where K is defined by (17). Now

$$\int_{0}^{\pi} \frac{dt}{t^{1+1/q}} \int_{0}^{t} |f(u)| \, du = \int_{0}^{\pi} |f(u)| \, du \int_{u}^{\pi} \frac{dt}{t^{1+1/q}} \leq A \int_{0}^{\pi} |f(u)| \, u^{-1/q} \, du,$$

that is, $f \in M^p$. On the other hand, by Minkowski's inequality,

 $\left(\int_0^{\pi} |t^{-1} \int_0^t f(u) du|^p dt\right)^{1/p} \leq \int_0^{\pi} du \left(\int_u^{\pi} |f(u)|^p t^{-p} dt\right)^{1/p} = A \int_0^{\pi} |f(u)| u^{-1/q} du.$ Therefore $G \in L^p$. Thus the theorem is proved.

10. Proof of Propositions 5 and 9. The function f_3 defined by (11) is integrable, but does not belong to both L^p and M^p . $t^{-1} \int_0^t f_3(u) du$ is integrable and then G_3 , defined by f_3 , is equal to $H_3 + K_3$, except for addition of some constant. Since

$$\int_{0}^{\pi} t^{-1/q} dt \Big| t^{-1} \int_{0}^{t} f_{3}(u) du \Big| < \infty \quad ext{and} \quad \int_{0}^{\pi} \Big| t^{-1} \int_{0}^{t} f_{3}(u) du \Big|^{p} dt < \infty,$$

we get $G_3 \in L^p \cap M^p$. Evidently $G_3 \in O^p$. Thus f_3 gives the solution of Proposition 9. Proposition 5 is proved using the same function f_3 .

11. Proof of Proposition 10. We shall define the even and periodic function f_6 by the equations

$$f_{6}(t) = h_{k} \quad \text{on} \quad (n_{k}^{-1}, n_{k}^{-1} + m_{k}^{-1}) \\ = -h_{k} \quad \text{on} \quad (n_{k}^{-1} + m_{k}^{-1}, n_{k}^{-1} + 2m_{k}^{-1}) \quad (k = 1, 2, \cdots) \\ = 0 \quad \text{otherwise in} \quad (0, \pi).$$

where $h_k = k^q (\log k)^{q-1} / (\log \log k)^2$, $m_4 = 4k^{q+1} (\log k)^q$ and $n_k = k^q (\log k)^q$. Then we can see that f_6 is integrable, $f_6 \in N^p$ and G_6 , defined by f_6 , does not belong to N^p , using that $f_6(u) \log \frac{2\pi}{u}$ is integrable.

References

- G. H. Hardy: Notes on some points in the integral calculus. LXVI. Messenger of Mathematics, 58, 50-52 (1928).
- [2] G. M. Petersen: Means of Fourier constants. Trans. Royal Soc. Canada, XLV, Series III, 32-38 (1951).
- [3] G. G. Lorentz: Some new functional spaces. Ann. Math., 51, 37-55 (1950).
- [4] R. P. Boas: Integrability theorems for trigonometric transforms. Ergebrisse der Math. und ihrer Grenzgebiete, **38** (1967).
- [5] A. H. Siddiqi: Dissertation. Arigarh, India (1967).
- [6] R. Bellmann: A note on a theorem of Hardy on Fourier constants. Bull. Amer. Math. Soc., 50, 741-744 (1944).
- [7] A. Zygmund: Trigonometric Series. Cambridge University Press (1959).

No. 6]