148. The Completion of a Convergence Space in the Sense of H. R. Fisher

By Suketaka MITANI University of Osaka Prefecture

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

In this paper we shall make a study of the completion of a space: here by a space we mean a set in which there is defined a closure operation satisfying three conditions $A \subseteq \overline{A}$, $\overline{\phi} = \phi$, and $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Such a space was introduced by Tukey [8] and studied also by Fisher [4] under the name of a convergence space.¹⁾

In this paper we shall describe a space by assigning a neighborhood system to each point of it.

Thus we get a generalization of the results of the author's paper $[7]^{2}$

§1. Let φ be a mapping of a set X into a set Y. Then for a family \mathfrak{A} consisting of subsets of X, we will denote by $\varphi(\mathfrak{A})$ the family $\{\varphi(A) | A \in \mathfrak{A}\}$ and for a family \mathfrak{B} consisting of subsets of Y, let's denote by $\varphi^{-1}(\mathfrak{B})$ the family $\{\varphi^{-1}(B) | B \in \mathfrak{B}\}$.

Let X be a subset of a set X^* , then for a filter f in X, the filter in X^* generated by f is denoted by f^{*}.

We consider a set X together with a family N of filters in X satisfying the following three conditions:

N1) to every $x \in X$ there corresponds uniquely a filter $\Re(x)$ each member of which contains x,

N2) a filter in X containing an element of N also belongs to N,

N3) for every $x \in X$, $\mathfrak{N}(x) \in N$.

We will denote such a space X with N by (X; N) and call it a *space* simply.

A filter base f in X converges to x in X if and only if the filter generated by f contains $\Re(x)$.³⁾

A filter $\Re(x)$ and each of its members are called the *neighborhood* system of x and a *neighborhood* of x respectively.

A mapping φ of a space (X; N) into a space (Y; M) is *continuous* if and only if for every $x \in X$ a filter generated by $\varphi(\Re(x))$ contains

¹⁾ In this paper spaces are all \mathcal{T}_1 convergence spaces. See [4].

²⁾ In that paper [7] the condition C6) is stated erroneously. It must be read as C6) of this paper and f in the last two lines on page 464 must be a leg.

³⁾ N1) with this definition of convergence is called \mathcal{I}_1 convergence structure of a space by Fisher.

 $\Re(\varphi(x))$; furthermore, if φ is one-to-one and onto and if φ^{-1} is also continuous, φ is called a *homeomorphism*.

The completeness is defined as follows: (X; N) is *complete* if and only if every filter belonging to N converges to some point of X in X.

If (X; N) is complete then N is uniquely determined by the neighborhood systems of all the points of X.

A filter $f \in N$ is *minimal* if there is no filter belonging to N that is contained properly in f.

A filter $f \in N$ is a *leg* in X if it converges to no point of X in X.

A completion $(X^*; N^*)$ of a space (X; N) is such a space that satisfies, in addition to the conditions N1), N2, and N3), the conditions C1) to C6) below:

C1) $X^* \supseteq X$,

C2) $(X^*; N^*)$ is complete,

C3) to every subset V of X, there corresponds a subset V^* of X^* such that $V^* \cap X = V$, and for every $x \in X$, $\{S \mid S \supseteq V^*, V \in \mathfrak{N}(x)\}$ is the neighborhood system of x in X^* ,

C4) for a point $x \in X^* \sim X$ and a subset V of X, if every leg $f \in N$ converging to x in X^* contains V then $x \in V^*$, and $\{S | S \supseteq V^* \ni x, V \subseteq X\}$ is the neighborhood system of $x \in X^* \sim X$ in X^* ,

C5) if $g \in N^*$ then $\{V | V^* \in g, V \subseteq X\} \in N$,

C6) any leg in X converges to only one point in X^* , and for every $x \in X^* \sim X$, there exists at least one leg in X converging to x in X^* .

Let's denote by $\mathfrak{N}^*(x)$ the neighborhood system of a point $x \in X^*$ in X^* .

Now, assume that there exists a completion $(X^*; N^*)$ of a space (X; N).

Then for any two legs f and g, if $\mathfrak{f} \supseteq \mathfrak{g}$ and f converges to x in X*, then by C6), g also converges to x in X*. So the filter $\bigcap_{\mathfrak{g} \subseteq \mathfrak{f}, \mathfrak{g} \in N\mathfrak{g}}$ converges to x in X*. Clearly it must belong to N by N3) and C5), and so it is a leg.

Denote $\bigcap_{g \subseteq f, g \in Ng}$ by [f]. Thus the following holds.

E) If f is a leg then [f] is also a leg.

Next, suppose that a space (X; N) satisfies the above Condition E). A leg f is minimal if and only if f = [f].

Put, for every subset V of X,

 $V^* = V \cup \{f \mid f \text{ is a minimal leg such that } V \in f\}.$

For every minimal leg f, let $\mathfrak{N}^*(\mathfrak{f})$ be the filter in X^* generated by the filter base $\{V^* | V \in \mathfrak{f}\}$. On the other hand, for all $x \in X$, put $\mathfrak{N}^*(x) = \{S | S \supseteq V^*, V \in \mathfrak{N}(x)\}$ and

 $N^* = \{ f | f \text{ is a filter in } X^* \text{ such that } \{ V | V^* \in f, V \subseteq X \} \in N \}.$

Thus we get a space $(X^*; N^*)$.

Then, an arbitrary $f \in N^*$ converges to some point $x \in X^*$ in X^* . Because, if $\{V | V^* \in f\}$ converges to some point $y \in X$ in X then we can take x=y; on the other hand, if $\{V | V^* \in f\}$ is a leg then we have $x=[\{V | V^* \in f\}]$.

Thus $(X^*; N^*)$ is complete.

Suppose that a leg $f \in N$ in X converges to $g \in N$ in X^{*}. Then f^* contains the filter in X^{*} generated by $\{V^* | V \in g\}$. So $f \supseteq g$, hence [f] = g. And no leg converges to any point of X in X^{*}.

This result shows that $(X^*; N^*)$ satisfies the former part of C6).

The other conditions for the completion are satisfied almost clearly. Thus we get,

Theorem. There exists a completion $(X^*; N^*)$ of a space (X; N) if and only if for every leg f in X, [f] is also a leg.

Let $(X^*; N^*)$ and $(X^+; N^+)$ be two completions of a space (X; N). For every $x \in X^* \sim X$, there exists a leg $f \in N$ that converges to xin X^* , and f converges to some point y in X^+ . Let us put $\varphi(x)=y$. Furthermore we put $\varphi(x)=x$ for all $x \in X$. Then we get a one-to-one mapping φ of X^* onto X^+ .

From Condition C4) it follows that for every subset V of X, $\varphi(V^*) = V^*$.

Thus we get

Theorem. A completion of a space (X; N) is uniquely determined by (X; N).

§ 2. A product (X; N) of spaces $(X_{\lambda}; N_{\lambda}), \lambda \in \Delta$ is defined to be a space satisfying Conditions P1) to P3) below:

P1) $X = \prod_{\lambda \in \mathcal{A}} X_{\lambda}$, i.e., X is the Cartesian product of X_{λ} ,

P2) a filter f in X belongs to N if and only if $P_{\lambda}(f) \in N_{\lambda}$ for all $\lambda \in \Delta$, where P_{λ} is the projection of X onto its λ -component X_{λ} ,

P3) for all $x_{\lambda} \in X_{\lambda}$, the neighborhood system $\mathfrak{N}(x)$ of $x = \prod_{\lambda \in A} x_{\lambda} \in X$ in X is the least filter containing $\bigcup_{\lambda \in A} P_{\lambda}^{-1}(\mathfrak{N}(x_{\lambda}))$.

P3) is equivalent to:

P3)' the neighborhood system of $\Pi_{\lambda \in A} x_{\lambda} \in \Pi_{\lambda \in A} X_{\lambda}$ in $\Pi_{\lambda \in A} X_{\lambda}$ is the least filter of which the projection into the λ -component X_{λ} agrees with the neighborhood system $\Re(x_{\lambda})$ of x_{λ} in X_{λ} for all $\lambda \in \Delta$.⁴⁾

A filter f in X converges to a point $x = \prod_{\lambda \in A} x_{\lambda}$ if and only if the filter $P_{\lambda}(f)$ in X_{λ} converges to x_{λ} in X_{λ} for all $\lambda \in \Delta$.

Hence we have

Theorem. A product $\Pi(X_{\lambda}; N_{\lambda})$ is complete if and only if each factor space $(X_{\lambda}; N_{\lambda})$ is complete.

⁴⁾ Furthermore it is equivalent to: P3)" a product of spaces $(X_{\lambda}; N_{\lambda})$ has the weakest \mathcal{I}_1 convergence structure such that each projection onto a component is continuous.

The following Condition T_2) is known as the Hausdorff separation axiom :

 T_2) for any distinct points x and y there exist disjoint neighborhoods of x and y.

If a space (X; N) satisfies the above Condition T_2 then (X; N) is said to be a T_2 space.⁵⁾

A product $\Pi(X_{\lambda}; N_{\lambda})$ is a T_2 space if and only if each factor space $(X_{\lambda}; N_{\lambda})$ is a T_2 space.

Suppose that T_2 spaces $(X_{\lambda}; N_{\lambda})$, $\lambda \in \Delta$ have completions $(X_{\lambda}^*; N_{\lambda}^*)$ which are also T_2 .

Then, the product $\Pi(X_{\lambda}; N_{\lambda})$ of $(X_{\lambda}; N_{\lambda})$ satisfies our Condition E) and so has the completion.

Denote $\Pi_{\lambda \in A}(X_{\lambda}; N_{\lambda})$ by (X; N).

A filter $f \in N$ is a leg if and only if $P_{\lambda}(f)$ is a leg for at least one $\lambda \in \Delta$.

Let us define a mapping φ of $(X^*; N^*)$ into $\Pi(X^*_{\lambda}; N^*_{\lambda})$ such that $\varphi \mid X$ is the identity and for every $x \in X^* \sim X$, $\varphi(x)$ is a point to which a leg $f \in N$ converging to x in X^* converges in $\Pi(X^*_{\lambda}; N^*_{\lambda})$. Then φ is clearly one-to-one and onto. We have $\varphi((P^{-1}_{\lambda}(K))^*) \subseteq P^{*-1}_{\lambda}(K^*)$ for any subset K of X_{λ} , where P^*_{λ} is the projection of $\Pi(X^*_{\lambda}; N^*_{\lambda})$ onto the λ -component $(X^*_{\lambda}; N^*_{\lambda})$.

Thus φ is continuous.

Let f_{λ} be any minimal filter belonging to N_{λ} and K be any subset of X_{λ} belonging to f_{λ} .

If φ^{-1} is continuous then $\varphi((P_{\lambda}^{-1}(K))^*) \supseteq P_{\lambda}^*(M^*)$ for some $M \in \mathfrak{f}_{\lambda}$.

In view of the proposition below, we see that $(X_{\lambda}^*; N_{\lambda}^*)$ for $\lambda \neq \mu$ are all Hausdorff spaces if a non-complete factor space $(X_{\mu}; N_{\mu}), \mu \in \Delta$ exists.

Proposition. Let $(X^*; N^*)$ be the completion of a topological space (X; N). Then $(X^*; N^*)$ is also a topological space if and only if for every minimal leg $f \in N$ and for any element V of f, there exists some element $W \in f$ such that $V \in \mathfrak{N}(x)$ for any $x \in W$.⁶⁾

Conversely, for these $(X_{\lambda}; N_{\lambda}), \lambda \in \Delta$, if $(X_{\lambda}^*; N_{\lambda}^*)$ is a Hausdorff space whenever there is a non-complete space $(X_{\mu}; N_{\mu}), \mu \in \Delta$ and $\lambda \neq \mu$, then for every finite subset $\Gamma \subseteq \Delta$ and for every open set $K_{\lambda} \subseteq X_{\lambda}, \lambda \in \Delta$,

$$\varphi((\Pi_{\lambda\in\Gamma}K_{\lambda}\cdot\Pi_{\lambda\notin\Gamma}X_{\lambda})^*)=\Pi_{\lambda\in\Gamma}K_{\lambda}^*\cdot\Pi_{\lambda\notin\Gamma}X_{\lambda}^*.^{7}$$

⁵⁾ It is to be noted that the condition $\overline{\overline{A}} = \overline{A}$ is not assumed in this paper.

⁶⁾ This proposition is obtained directly from the following well known remark. **Remark.** A space (X; N) is a topological space if and only if for every $x \in X$ and its any neighborhood $V \in \mathfrak{N}(x)$ there exists a neighborhood $W \in \mathfrak{N}(x)$ such that for all points $y \in W$, $V \in \mathfrak{N}(y)$.

⁷⁾ When a non-complete factor space is only one $(X_{\mu}; N_{\mu})$, K_{μ} may be arbitrary subset of X_{μ} .

Thus, the following holds.

Theorem. Let $(X_{\lambda}; N_{\lambda}), \lambda \in \Delta$ be T_2 spaces such that they have the completions $(X_{\lambda}^*; N_{\lambda}^*)$ which are also T_2 . Then there exists a completion of the product $\Pi(X_{\lambda}; N_{\lambda})$. And it agrees with $\Pi(X_{\lambda}^*; N_{\lambda}^*)$ if and only if $(X_{\lambda}^*; N_{\lambda}^*)$ is a Hausdorff space whenever there exists a non-complete space $(X_{\mu}; N_{\mu}), \mu \in \Delta$ and $\mu \neq \lambda$.

Let $(X^*; N^*)$ be the completion of (X; N).

In general, for every subsets S and U, if $S \cap U = \phi$ then $S^* \cap U^* = \phi$.

If there are two legs f and g such as for any $V \in f$ and for any $W \in \mathfrak{g}, V \cap W \neq \phi$, then $\{S | S \supseteq V \cap W, V \in \mathfrak{f}, W \in \mathfrak{g}\}$ is also in N. Either this filter converges in X or it is a leg. If it is a leg, then $[\mathfrak{f}] = [\{S | S \supseteq V \cap W, V \in \mathfrak{f}, W \in \mathfrak{g}\}] = [\mathfrak{g}].$

So we get

Proposition. A completion $(X^*; N^*)$ of a T_2 space (X; N) is T_2 if and only if for every leg \mathfrak{f} and for all points $x \in X, V \cap W = \phi$ for some subset $V \in [\mathfrak{f}]$ of X and some neighborhood W of x.

§ 3. A continuous mapping φ of (X; N) into (Y; M) is *-continuous if a filter generated by $\varphi(\mathfrak{f})$ belongs to M for every filter $\mathfrak{f} \in N$.

Let φ be a *-continuous mapping of a space (X; N) into a space (Y; M).

If (X; N) and (Y; M) have the completions $(X^*; N^*)$ and $(Y^*; M^*)$, then there exists a mapping F of $(X^*; N^*)$ into $(Y^*; M^*)$ such that for every $x \in X^* \sim X$, F(x) is a point of Y^* to which an image $\varphi(\mathfrak{f})$ of a minimal leg \mathfrak{f} converging to x in X^* converges and $F|X=\varphi$. We will call this mapping F an extention of φ .

Proposition. Let a mapping F of a completion $(X^*; N^*)$ of a spaces (X; N) into a complete spaces (Y; M) be an extention of a *-continuous mapping φ of (X; N) into (Y; M). Then F is continuous if for any $y \in F(X^*)$, $\{S | S \supseteq \overline{V} \cap F(X^* \sim X), V \in \Re(y)\} \supseteq \Re(y)$.

References

- [1] N. Bourbaki: Topologie générale. Paris (1940), 3 ed. (1960).
- [2] L. W. Cohen: Uniformity property in topological space satisfying the first denumerable posturate. Duke Math. Jour., 3 (1937).
- [3] —: On imbedding a space in a complete space. Duke Math. Jour., 5 (1939).
- [4] H. R. Fisher: Limesräume. Math. Annalen, 137 (1959).
- [5] F. Hausdorff: Mengenlehre. Berlin (1914).
- [6] T. Inagaki: Point Set Theory (in Japanese). Tokyo (1949).
- [7] S. Mitani: A generalization of Cauchy filters and the completion. Proc. Japan Acad., 42 (1966).
- [8] J. W. Tukey: Convergence and Uniformity in Topology. Princeton (1940).