135. Notes on the Uniform Distribution of Sequences of Integers

By Lauwerens Kuipers*) and Saburô Uchiyama**)
(Comm. by Zyoiti Suetuna, m. J. A., Sept. 12, 1968)

In 1961 I. Niven [5] introduced the following concept of uniform distribution of sequences of integers. Let $A=\left(a_{n}\right)$ be an infinite sequence of integers not necessarily distinct from each other. For any integers j and $m \geqq 2$ we denote by $A(N, j, m)$ the number of terms $a_{n}(1 \leqq n \leqq N)$ satisfying the condition $a_{n} \equiv j(\bmod m)$. The sequence A is said to be uniformly distributed $(\bmod m)$ if the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} A(N, j, m)=\frac{1}{m}
$$

exists for all $j, 1 \leqq j \leqq m$. If A is uniformly distributed $(\bmod m)$ for every integer $m \geqq 2, A$ is said to be uniformly distributed.
S. Uchiyama [9] has proved the following theorem which is the analogue of the Weyl criterion :

Theorem 1. Let $A=\left(a_{n}\right)$ be an infinite sequence of integers. A necessary and sufficient condition that A be uniformly distributed $(\bmod m), m \geqq 2$, is that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} S_{N}\left(A, \frac{h}{m}\right)=0
$$

for all $h, 1 \leqq h \leqq m-1$, where

$$
S_{N}(A, t)=\sum_{n=1}^{N} e\left(a_{n} t\right), \quad e(t)=e^{2 \pi i t} .
$$

Hence :
Corollary 1. A necessary and sufficient condition for an infinite sequence $A=\left(a_{n}\right)$ of integers to be uniformly distributed is that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} S_{N}(A, t)=0
$$

for all rational numbers $t, t \not \equiv 0(\bmod 1)$.
In order to prove Theorem 1 it will suffice to observe that

$$
\sum_{h=1}^{m-1}\left|S_{N}\left(A, \frac{h}{m}\right)\right|^{2}=m \sum_{j=1}^{m}\left(A(N, j, m)-\frac{N}{m}\right)^{2} .
$$

The notion of uniform distribution of integers has been generalized by H. G. Meijer [4] to the notion of uniform distribution of g-adic

[^0]numbers and by L. A. Rubel [7] to the notion of uniform distribution of elements in locally compact topological groups.

1. The following theorem, which is due to C. L. van den Eynden [2], expresses a connection between the uniform distribution of sequences of integers and the classical uniform distribution $(\bmod 1)$ of sequences of real numbers.

Theorem 2. If $\left(\alpha_{n}\right)$ is an infinite sequence of real numbers such that the sequence $\left(\alpha_{n} / m\right)$ is uniformly distributed $(\bmod 1)$ for all integers $m \neq 0$, then the sequence of the integer parts $\left(\left[\alpha_{n}\right]\right)$ is uniformly distributed.

This result has a number of applications.
Corollary 2. Let $\left(\alpha_{n}\right)$ be a sequence of real numbers. If the sequence $\left(\alpha_{n} s\right)$ is uniformly distributed (mod1) for every real number $s \neq 0$, then the sequence of integers $\left(\left[\alpha_{n} s\right]\right)$ is uniformly distributed for every real number $s \neq 0$.

Proof. From the assumption on $\left(\alpha_{n}\right)$ it follows that the sequence $\left(\alpha_{n} s / m\right)$, where m is any integer $\neq 0$, is uniformly distributed $(\bmod 1)$ for every real $s \neq 0$.

By a similar reasoning we obtain
Corollary 3. Let $\left(\alpha_{n}\right)$ be a sequence of real numbers. If the sequence $\left(\alpha_{n} s\right)$ is uniformly distributed $(\bmod 1)$ for almost all real numbers s, then the sequence of integers ($\left[\alpha_{n} s\right]$) is uniformly distributed for almost all real numbers s.

Now, if $f(t)$ is a real function defined for $t>0$, then the behaviour of the residues of the numbers $f(n)(\bmod 1)$ for positive integral n with respect to their distribution on the unit-interval can in many cases be derived from the properties of the derivative $f^{\prime}(t)$ (if $f(t)$ is a differentiable function) or from the properties of the difference $\Delta f(t)$ $=f(t+1)-f(t)$. It occurs often that these properties are not violated if one considers constant multiples of $f(t)$. Hence applying Theorem 2, or Corollary 2, we have the following result.

Theorem 3. (a) If $f(t)(t>0)$ is differentiable, and if $f(t) \rightarrow \infty$, $f^{\prime}(t) \rightarrow 0$ (monotonically) and $t f^{\prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$, then the sequence of integers $([f(n)])$ is uniformly distributed.
(b) If the sequence $(f(n))$ has the property that $\Delta f(n)=f(n+1)$ $-f(n) \rightarrow \theta$ (irrational) as $n \rightarrow \infty$, then the sequence ($[f(n)]$) is uniformly distributed.
(c) If the sequence $(f(n))$ has the property that $\Delta f(n) \rightarrow 0$ (monotonically) and $n|\Delta f(n)| \rightarrow \infty$ as $n \rightarrow \infty$, then the sequence ($[f(n)]$) is uniformly distributed.

It is well known that the sequence ($n^{\sigma} s$) is uniformly distributed $(\bmod 1)$ for every real $s \neq 0$ and σ with $0<\sigma<1$, as has been shown by
several authors (see for this result and its generalizations [1, p. 9]). Thus, by Corollary 2, the sequence of integers ($\left[n^{\sigma} s\right]$) is uniformly distributed for every real $s \neq 0$ and $\sigma, 0<\sigma<1$. This result, the special case of which for $\sigma=1 / q, q$ an integer $\geqq 2$, is due to S . Uchiyama [9], can also be derived by applying Theorem 3 .

The following theorem is also due to van den Eynden [2].
Theorem 4. A necessary and sufficient condition for a real sequence $\left(\alpha_{n}\right)$ to be uniformly distributed $(\bmod 1)$ is that the sequence of integer parts $\left(\left[m \alpha_{n}\right]\right)$ is uniformly distributed $(\bmod m)$ for all integers $m \geqq 2$.

Proof. Let j be any one of the residues $0,1, \cdots, m-1(\bmod m)$. Then the set of positive integers

$$
\left\{n:\left[m \alpha_{n}\right] \equiv j(\bmod m)\right\}=\left\{n: \frac{j}{m} \leqq \alpha_{n}-\left[\alpha_{n}\right]<\frac{j+1}{m}\right\}
$$

Note that any interval $[\alpha, \beta) \subset[0,1)$ can be approximated by intervals of the type $[j / m,(j+1) / m)(m=2,3, \cdots ; j=0,1, \cdots, m-1)$ as closely as we want.
2. It is well known that the sequence $(\log n)$ is not uniformly distributed $(\bmod 1)$. In order to show that the sequence $([\log n])$ is not uniformly distributed $(\bmod m)$ for any $m \geqq 2$ we apply Corollary 1.

Theorem 5. The sequence of integers $A=([\log n])$ is not uniformly distributed $(\bmod m)$ for any $m \geqq 2$.

Proof. Set $b=[\log N]$. Let k be any integer between 0 and b, and $B(k)$ be the number of solutions in positive integers n of the equation $[\log n]=k$. Then we have $B(k)=e^{k+1}-e^{k}+O(1)$, so that (for t rational and $\not \equiv 0(\bmod 1)$)

$$
\begin{aligned}
\frac{1}{N} S_{N}(A, t) & =\frac{1}{N} \sum_{k=0}^{b} B(k) e(k t) \\
& =\frac{e-1}{N} \sum_{k=0}^{b} e^{k(1+2 \pi i t)}+\frac{1}{N} \sum_{k=0}^{b} O(1) .
\end{aligned}
$$

The second term on the right goes to 0 as $N \rightarrow \infty$, but the first term does not as one can easily show (in fact, this term is bounded but does not converge as $N \rightarrow \infty$).
3. As has been pointed out by G. Helmberg [3] Theorem 3 (or its proof given, at least) in [9, §4] was wrong. In order to state a correct version of this theorem we recall the concept of 'almost uniform distribution $(\bmod 1)^{\prime}$ of sequences of real numbers, which has been introduced by I. I. Pjateckiĭ-Šapiro [6]. An infinite sequence $\left(\alpha_{n}\right)$ of real numbers is said to be almost uniformly distributed $(\bmod 1)$, if there is a strictly increasing sequence $\left(N_{k}\right)$ of natural numbers such that if $P_{k}(\alpha, \beta)$ denotes the number of terms $\alpha_{n}\left(1 \leqq n \leqq N_{k}\right)$ satisfying the condition $\alpha \leqq \alpha_{n}<\beta(\bmod 1)$, where $0 \leqq \alpha<\beta \leqq 1$, then for any such
fixed real numbers α, β we have

$$
\lim _{k \rightarrow \infty} \frac{1}{N_{k}} P_{k}(\alpha, \beta)=\beta-\alpha .
$$

Theorem 6. If $A=\left(\alpha_{n}\right)$ is a uniformly distributed sequence of integers, then the sequence $\left(a_{n} s\right)$ is almost uniformly distributed (mod 1) for almost all real numbers s.

Proof. As in [9, §4] we have for any integer $h \neq 0$

$$
\int_{0}^{1}\left|\frac{1}{N} S_{N}(A, h t)\right|^{2} d t \leqq \frac{2}{m}+\frac{2}{N^{2}} D^{2}(N, m),
$$

where $m \geqq 2$ and

$$
D^{2}(N, m)=\sum_{j=1}^{m}\left(A(N, j, m)-\frac{N}{m}\right)^{2} .
$$

Since A is uniformly distributed $(\bmod m)$ for every $m \geqq 2$, we find

$$
\limsup _{N \rightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} S_{N}(A, h t)\right|^{2} d t \leqq \frac{2}{m},
$$

and so

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} S_{N}(A, h t)\right|^{2} d t=0
$$

whence

$$
\liminf _{N \rightarrow \infty}\left|\frac{1}{N} S_{N}(A, h s)\right|=0
$$

for almost all real s. The result follows from this at once.
Our proof of Theorem 6 can easily be extended to prove
Theorem 7. Let $f(t) \in L^{2}$ be a function with period 1 and mean value 0 (i.e., $\int_{0}^{1} f(t) d t=0$). Then for any uniformly distributed sequence $\left(a_{n}\right)$ of integers we have

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(a_{n} t\right)\right|^{2} d t=0 .
$$

We now introduce the notion of 'almost uniform distribution' of sequences of integers. An infinite sequence $A=\left(a_{n}\right)$ of integers is said to be almost uniformly distributed $(\bmod m)$, where $m \geqq 2$, if there is a strictly increasing sequence $\left(N_{k}\right)$ of natural numbers such that

$$
\lim _{k \rightarrow \infty} \frac{1}{N_{k}} A\left(N_{k}, j, m\right)=\frac{1}{m}
$$

for all $j, 1 \leqq j \leqq m$. If A is almost uniformly distributed $(\bmod m)$ for every $m \geqq 2$, we say that A is almost uniformly distributed.

A necessary and sufficient condition for a sequence $A=\left(a_{n}\right)$ of integers to be almost uniformly distributed $(\bmod m), m \geqq 2$, is that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{h=1}^{m-1}\left|S_{N}\left(A, \frac{h}{m}\right)\right|^{2}=0
$$

As an application of Theorem 6 we shall mention the following
Theorem 8. If (a_{n}) is a uniformly distributed sequence of integers, then the sequence of integers ($\left[a_{n} s\right]$) is almost uniformly distributed for almost all real members s.

Proof. By Theorem 6, the sequence $\left(a_{n} s\right)$ is almost uniformly distributed $(\bmod 1)$ for almost all real s. The rest of the proof can easily be carried out as in Proof of Corollary 3 (or Corollary 2).
4. In connection with Theorem 6 the following theorem will be of some interest.

Theorem 9. Let $A=\left(a_{n}\right)$ be a sequence of integers not necessarily distinct from each other. If the condition

$$
\sum_{2 \leq m \leq M} m D^{2}(N, m)=O\left(M N^{2}\right)
$$

is fulfilled for all large N and some $M \geqq(\log N)^{1+\varepsilon}(\varepsilon>0)$, where

$$
D^{2}(N, m)=\sum_{j=1}^{m}\left(A(N, j, m)-\frac{N}{m}\right)^{2},
$$

then the sequence $\left(a_{n} s\right)$ is uniformly distributed $(\bmod 1)$ for almost all real numbers s.

Proof. We infer from the proof of Theorem 6 that for any integer $h \neq 0$

$$
\int_{0}^{1}\left|\frac{1}{N} S_{N}(A, h t)\right|^{2} d t=O\left(\frac{1}{M}\right)=O\left(\frac{1}{(\log N)^{1+\varepsilon}}\right) .
$$

One may proceed the proof henceforward in a standard way.
5. A result in a somewhat different direction is the following

Theorem 10. Let $A=\left(a_{n}\right)$ be a uniformly distributed sequence of non-negative integers all different from each other, and let A be measurable in the sense of $[8, \S 2]$ (Banach-Buck measure). Then for all but possibly countably many real numbers s the sequence ($a_{n} s$) is almost uniformly distributed $(\bmod 1)$.

Proof. We use part of Corollary 1 of [8], namely : if $A=\left(a_{n}\right)$ is uniformly distributed and if A is Banach-Buck measurable, then this measure of A equals 1 . It is then obvious that the sequence A has positive density. Our theorem is thus an easy consequence of a result of Pjateckiĭ-Šapiro [6].

References

[1] J. Cigler and G. Helmberg: Neuere Entwicklungen der Theorie der Gleichverteilung. Jahresber. Deutsch. Math. Verein., 64, Heft, 1, 1-50 (1962).
[2] C. L. van den Eynden: The Uniform Distribution of Sequences. Dissertation, Univ. of Oregon (1962).
[3] G. Helmberg: Review for the paper [9] below. Zbl. f. Math., 131, 292 (1966).
[4] H. G. Meijer: Uniform Distribution of g-adic Numbers. Dissertation, Univ. of Amsterdam (1967).
[5] I. Niven: Uniform distribution of sequences of integers. Trans. Amer. Math. Soc., 98, 52-61 (1961).
[6] I. I. Pjateckii-Sapiro: On a generalization of the notion of uniform distribution of fractional parts. Matem. Sbornik, 30(72), 669-676 (1952) (in Russian).
[7] L. A. Rubel: Uniform distribution in locally compact groups. Comment. Math. Helv., 39, 253-258 (1965).
[8] M. Uchiyama and S. Uchiyama: A characterization of uniformly distributed sequences of integers. J. Fac. Sci., Hokkaidô Univ., Ser. I, 16, 238-248 (1962).
[9] S. Uchiyama: On the uniform distribution of sequences of integers. Proc. Japan Acad., 37, 605-609 (1961).

[^0]: *) Department of Mathematics, Southern Illinois University, Carbondale, Ill., U. S. A.
 **) Department of Mathematics, Shinshû University, Matsumoto, Japan.

