174. An Algebraic Formulation of K-N Propositional Calculus. IV

By Shôtarô TANAKA

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1968)

In his paper [1], K. Iséki has defined the NK-algebra. For the details of the NK-algebra, see [1]. The conditions of the NK-algebra are as follows:

- a) $\sim (p*p)*p=0$,
- b) $\sim p*(q*p) = 0$,
- c) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0$,
- d) Let α , β be expressions in this system, then $\sim \alpha + \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$.

In my paper [2], I showed that the NK-algebra is characterized by the following conditions:

- a) $\sim (p*p)*p=0$,
- b') $\sim q*(q*p)=0$,
- c) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0$,
- d) Let α , β be expressions in this system, then $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$.
 - 1) $\sim (p*p)*p=0$.
 - 2) $p*(q*\sim p)=0$.
 - 3) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0.$
- 4) $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α , β , are expressions in this system. We shall show that 1)-4) imply b').

In 3), put $p=\beta$, $q=\alpha$, $r=\gamma$, then by 4) we have

A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0$.

Then we have

- B) $\sim \alpha * \beta = 0$ and $\gamma * \alpha = 0$ imply $\beta * \gamma = 0$.
- C) $\sim \alpha * \beta = 0$ and $\sim \gamma * \alpha = 0$ imply $\beta * \sim \gamma = 0$.

In B), put $\alpha = \sim p * \sim p$, $\beta = \sim p$, $\gamma = p$, then by 1) and by 2) we have

5) $\sim p * p = 0$.

In 3), put q=p, then $\sim \sim (\sim \sim (p*r)*\sim (r*p))*\sim (\sim p*p)=0$.

By 5) we have

6) $\sim \sim (p*r)*\sim (r*p)=0$.

In 6), put $p=\alpha$, $r=\beta$, then $\sim \sim (\alpha*\beta)*\sim (\beta*\alpha)=0$.

Hence by 4) we have

D) $\beta * \alpha = 0$ implies $\alpha * \beta = 0$.

In 6), put $r = \sim q$, then by 5) we have

7) $q*\sim q=0$.

In 3) $p = \sim \beta$, $q = \sim \alpha$, $r = \alpha$, then $\sim \sim (\sim \sim (\sim \beta * \alpha) * \sim (\alpha * \sim \alpha)) * \sim (\sim \sim \alpha * \sim \beta) = 0$. By 7) we have

E) $\sim \alpha * \sim \beta = 0$ implies $\sim \beta * \alpha = 0$.

In 3, put $p=\alpha$, $q=\beta$, $r=\gamma$, then we have $\sim \sim (\sim \sim (\alpha*\gamma)*\sim (\gamma*\beta))*$ $\sim (\sim \beta*\alpha)=0$. By E) and 4) we have

F) $\sim \beta * \alpha = 0$ implies $\sim (\gamma * \beta) * (\alpha * \gamma) = 0$.

In F), put $\alpha = q$, $\beta = \sim \sim q$, $\gamma = p$, then by 7) and E) we have

8) $\sim (p*\sim \sim q)*(q*p)=0.$

Suppose $\sim \alpha * \beta = 0$ and $\sim \gamma * \alpha = 0$, then by C) we have $\beta * \sim \gamma = 0$. Further by D), $\beta * \sim \gamma = 0$ implies $\sim \gamma * \beta = 0$. Hence we have

G) $\sim \alpha * \beta = 0$, $\sim \gamma * \alpha = 0$ imply $\sim \gamma * \beta = 0$.

In 2), put $p = \sim q$, q = p, then $\sim q*(p*\sim \sim q) = 0$. Hence by 8), 2) and G) we have

9) $\sim q*(q*p)=0$.

This thesis is b'). Therefore the proof is complete.

References

- K. Iséki: An algebraic formulation of K-N propositional calculus. Proc. Japan Acad., 42, 1164-1167 (1966).
- [2] S. Tanaka: An algebraic formulation of K-N propositional calculus. II. Proc. Japan Acad., 43, 129-131 (1967).