166. On Semi-Groups in Banach Algebras Close to the Identity

By R. A. HIRSCHFELD

Department of Mathematics, Catholic University of Nijmegen, The Netherlands

(Comm. by Zyoiti SUETUNA, M. J. A., Oct. 12, 1968)

In their recent paper [1], Nakamura and Yoshida showed that the identity I is the only bounded operator T on a Hilbert space which satisfies $||T^n-I|| \le \delta < 1$ for $n=1, 2, 3, \cdots$. Their proof is based on the mean ergodic theorem.

In the present note a more general result is derived by means of a Bourbaki exercise on spectral theory in Banach algebras.

Theorem. Let A be a complex Banach algebra with an identity e and $S \subset A$ a multiplicative semi-group (not necessarily commutative) such that $||s-e|| \le \delta < 1$ for every $s \in S$. Then, $S = \{e\}$.

Proof. Let s be an arbitrary element of S, so that $||s^n - e|| \le \delta < 1$ for $n \in IN$. We have (s clearly being invertible)

(1) $||s^{n}|| \leq 1 + \delta$ and $||s^{-n}|| \leq (1-\delta)^{-1}$, $n \in IN$. The first statement being obvious, the second follows from

 $||s^{-n}|| \le ||s^{-n} - e|| + 1 = ||s^{-n}(e - s^{n})|| + 1 \le ||s^{-n}||\delta + 1.$

Next, if $\lambda \in \sigma(s)$, then $\lambda^n - 1 \in \sigma(s^n - e)$. Simple arguments make it plain that the ensuing inequalities $|\lambda^n - 1| \le ||s^n - e|| \le \delta$; $n \in IN$, have the unique solution $\lambda = 1$. Consequently, q = s - e has spectrum {0}.

Finally, we invoke [2], p. 92, Exerc. 24 b): if q is quasi-nilpotent in s=e+q, then $q^{k}=0$ for some $k \in IN$ is equivalent to $\lim_{n \to \infty} n^{-k} ||s^{\pm n}||=0$. It follows from (1) that this limit is zero for k=1, whence q=0 and we are done.

Remark. The example A = C[0, 1], $S = \{s \in A \cdot 0 < s \le 1\}$ shows that the theorem breaks down upon weakening the assumption to ||s-e|| < 1 for $s \in S$.

References

- M. Nakamura and M. Yoshida: On a generalization of a theorem of Cox. Proc. Japan Acad., 43, 108-110 (1967).
- [2] N. Bourbaki: Théories spectrales. Chap. I et II, Act. Sci. Ind., No. 1332, Hermann, Paris (1967).