Relations between Unitary \(\rho_{\cdot} \) Dilatations 226. and Two Norms. II

By Takayuki Furuta Faculty of Engineering, Ibaraki University (Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1968)

1. Following [1] [4] [7] an operator T on a Hilbert space H possesses a unitary ρ -dilatation if there exist a Hilbert space K containing H as a subspace, a positive constant ρ and a unitary operator U on Ksatisfying the following representation

(1)
$$T^n = \rho \cdot PU^n \quad (n=1, 2, \cdots)$$

where P is the orthogonal projection of K on H. Put $\mathcal{C}_{\mathfrak{g}}$ the class of all operators on H having a unitary ρ -dilatation on a suitable enlarged space K. These classes $\mathcal{C}_{\rho}(\rho \geq 0)$ were introduced by Sz-Nagy and C. Foias [7]. They have shown a characterization and the monotonity of $\mathcal{C}_{\mathfrak{g}}$. In the previous paper [4] we obtained the condition for the operator norm ||T|| and the numerical radius $||T||_N$ satisfied by T in \mathcal{C}_{ρ} $(\rho \leq 2)$,

that is if $T \in \mathcal{C}_{\rho}$ $(0 \leq \rho \leq 1)$, then

$$1/2\|T\| \leq \|T\|_{\scriptscriptstyle N} \leq \begin{cases} \|T\| & \left(0 \leq \|T\| \leq \frac{\rho}{2-\rho}\right) \\ \frac{\rho}{2-\rho} & \left(\frac{\rho}{2-\rho} \leq \|T\| \leq \rho\right) \end{cases}$$

$$and \ if \ T \in \mathcal{C}_{
ho} \ (1 \leq
ho \leq 2), \ then \ 1/2 \|T\| \leq \|T\|_N \leq \left\{ egin{array}{c} \|T\| & (0 \leq \|T\| \leq 1) \\ 1 & (1 \leq \|T\| \leq
ho). \end{array}
ight.$$

In this paper we continue the investigation for classes C_{ρ} ($\rho \geq 2$). We give a simple necessary condition for $T \in \mathcal{C}_{\rho}(\rho \geq 2)$ related to both ||T|| and $||T||_N$ and its graphic representation.

2. The following theorems are known and we cite for the sake of convenience ([2] [4] [7]).

Theorem A. An operator T in H belongs to the class C_{ρ} if and only if it satisfies the following conditions

$$\begin{array}{ll} \text{(i)} & \|h\|^2 - 2 \Big(1 - \frac{1}{\rho}\Big) \operatorname{Re}(zTh,h) + \Big(1 - \frac{2}{\rho}\Big) \|zTh\|^2 \geqq 0 \\ & \text{for h in H and $|z| \leqq 1$,} \\ \text{(II)} & \text{the spectrum of T lies in the closed unit disk.} \end{array}$$

(ii) If $\rho \leq 2$, then the condition (I_e) implies (II).

Using the notion of shell, Ch. Davis [2] has proved the following proposition.

Proposition. If $\rho \geq 2$, then the condition (I_{ρ}) also implies (II). This proposition was implicitly contained in [7]. Thus we have the following theorem.

Theorem A'. An operator T belongs to C_{ρ} if and only if it satisfies the condition (I_{ρ}) .

Theorem B. C_{ρ} is non-decreasing with respect to the index ρ in the sense that

$$C_{\rho_1} \subset C_{\rho_2}$$
 if $0 < \rho_1 \leq \rho_2$.

The following theorems were proved in [4].

Theorem C. (i) If
$$T \in \mathcal{C}_{\rho}$$
 for $0 \leq \rho \leq 1$, then $||T||_{N} \leq \frac{\rho}{2-\rho}$.

- (ii) If $T \in \mathcal{C}_{\rho}$ for $1 \leq \rho \leq 2$, then $||T||_{N} \leq 1$.
- (iii) If $(2-\rho) \|T\|^2 + 2(1-\rho) \|T\|_N \rho \le 0$ for $0 \le \rho \le 1$, then $T \in \mathcal{C}_{\rho}$.
- (iv) If $(2-\rho)\|T\|^2 + 2(\rho-1)\|T\|_N \rho \le 0$ for $1 \le \rho \le 2$, then $T \in C_\rho$. Theorem D. (i) If $T \in C_\rho$, there exists k in [1/2, 1] such that $(2-\rho)\|T\|^2 k^2 + 2(1-\rho)\|T\|_N - \rho \le 0$ for $0 \le \rho \le 1$.
- (ii) If $T \in \mathcal{C}_{\rho}$, there exists k in [1/2, 1] such that $(2-\rho)\|T\|^2k^2+2(\rho-1)\|T\|_N-\rho \le 0$ for $1 \le \rho \le 2$.
 - 3. For $2 \leq \rho$, the condition (I_{ρ}) is replaced by

 $(\rho-2)\|zTh\|^2-2(\rho-1)\,|\,(Th,h)\,|\,r{\rm cos}\psi+\rho\,\|\,h\,\|^2\geqq 0\;for\;h\;in\;H,\,|z|\leqq 1\;that\;is$

$$(I_{\rho}')$$
 $(\rho-2) \|Th\|^2 r^2 - 2(\rho-1)|(Th,h)|r\cos\psi + \rho \ge 0$

for every unit vector h in H, where $z=re^{i\theta}$, $0 \le r \le 1$, $\psi=\varphi+\theta$ and φ is the argument of (Th,h).

Since the left hand side of (I_{ρ}) is positive if it is so when $\cos \psi = 1$, (I'_{ρ}) is equivalent to

$$(I_{\rho}'') \qquad (\rho - 2) \|Th\|^2 r^2 - 2(\rho - 1) |(Th, h)| r + \rho \ge 0$$

for every unit vector h in H and for $0 \le r \le 1$.

Lemma. If $T \in \mathcal{C}_{\rho}$ for $\rho \geq 2$, there exists k in [1/2, 1] such that $(\rho-2)\|T\|^2k^2r^2-2(\rho-1)\|T\|_Nr+\rho\geq 0$ for $0\leq r\leq 1$.

Proof. Let $\{h_n\}$ be a sequence of unit vectors which $|(Th_n, h_n)|$ converges to $||T||_N$. Then

$$|(Th_n, h_n)| \leq ||Th_n|| \leq ||T||,$$

hence

$$||T||_N \leq \sup ||Th_n|| \leq ||T||.$$

Thus we get

$$\frac{1}{2} \leq \frac{\|T\|_N}{\|T\|} \leq \frac{\sup \|Th_n\|}{\|T\|} \leq 1.$$

Put $k=\frac{\sup\|Th_n\|}{\|T\|}$, then $1/2 \le k \le 1$ and $\sup\|Th_n\|=k\|T\|$. By $(I_{\rho}^{\prime\prime})$ we

have

By Theorem A', the proof is complete.

Theorem.

(i) If $T \in \mathcal{C}_{\rho}$ for $2 \leq \rho \leq \sqrt{2} + 1$, then

$$1/2 \|T\| \leq \|T\|_{N} \leq \begin{cases} \|T\| & (0 \leq \|T\| \leq 1) \\ \frac{\rho - 2}{2(\rho - 1)} \|T\|^{2} + \frac{\rho}{2(\rho - 1)} & (1 \leq \|T\| \leq \rho). \end{cases}$$

(ii) If $T \in \mathcal{C}_{\rho}$ for $\rho \geq \sqrt{2} + 1$, then

$$1/2\|T\| \leq \|T\|_{N} \leq \begin{cases} \|T\| & (0 \leq \|T\| \leq 1) \\ \frac{\rho - 2}{2(\rho - 1)} \|T\|^{2} + \frac{\rho}{2(\rho - 1)} \left(1 \leq \|T\| \leq \sqrt{\frac{\rho}{\rho - 2}}\right) \\ \frac{\sqrt{\rho(\rho - 2)}}{\rho - 1} \|T\| \left(\sqrt{\frac{\rho}{\rho - 2}} \leq \|T\| \leq \rho\right). \end{cases}$$

Proof. We put

$$\mathcal{G}_{\rho,\,k,\,r}(\|T\|\,,\,\|T\|_{N})\!\equiv\!(\rho\!-\!2)\|T\|^{2}k^{2}r^{2}\!-\!2(\rho\!-\!1)\|T\|_{N}r\!+\!\rho$$

and define the following domains in the $(||T||, ||T||_N)$ plane

$$\begin{split} \mathcal{Q}_{\rho,\,k,\,r}(\|T\|,\,\|T\|_N) &\equiv \{(\|T\|,\,\|T\|_N)\,;\,\mathcal{F}_{\rho,\,k,\,r}(\|T\|,\,\|T\|_N) \geqq 0 \\ &\quad \text{for some} \quad r \in [0,1] \} \\ \mathcal{Q}_{\rho,\,\epsilon}(\|T\|,\,\|T\|_N) &\equiv \bigcap_{0 \le r \le 1} \mathcal{Q}_{\rho,\,k,\,r}(\|T\|,\,\|T\|_N) \\ \mathcal{Q}_{\rho}(\|T\|,\,\|T\|_N) &\equiv \bigcup_{\frac{1}{2} \le k \le 1} \mathcal{Q}_{\rho,\,k}(\|T\|,\,\|T\|_N). \end{split}$$

Then by lemma the domain $\mathcal{Q}_{\rho}(\|\tilde{T}\|, \|T\|_N)$ indicates the necessary condition for $T \in \mathcal{C}_{\rho}$ in the sense that if $T \in \mathcal{C}_{\rho}$, then $(\|T\|, \|T\|_N) \in \mathcal{Q}_{\rho}(\|T\|, \|T\|_N)$.

Now let us consider the envelope of $\mathcal{F}_{\rho, k, r}(\|T\|, \|T\|_N) = 0$ for all r and fixed ρ , k as follows. We eliminate the parameter r from the simultaneous equations

$$\begin{cases}
\mathcal{F}_{\rho, k, r}(\|T\|, \|T\|_N) = 0 \\
\frac{\partial \mathcal{F}_{\rho, k, r}(\|T\|, \|T\|_N)}{\partial r} = 0
\end{cases}$$

then we get the line

$$||T||_N = \frac{k\sqrt{\rho(\rho-2)}}{\rho-1}||T||$$

as the envelope.

$$\begin{split} &\text{We define } \mathcal{D}_{E(\rho,k)}(\|T\|,\|T\|_N) \text{ and } D^L_{\rho,\,k,1}(\|T\|,\|T\|_N) \text{ by} \\ &\mathcal{D}_{E(\rho,k)}(\|T\|,\|T\|_N) \equiv \left\{ (\|T\|,\|T\|_N) \, ; \, \|T\|_N \! \leq \! \frac{k \sqrt{\rho(\rho\!-\!2)}}{\rho\!-\!1} \|T\| \right\} \\ &\mathcal{D}^L_{\rho,\,k,1}(\|T\|,\|T\|_N) \! \equiv \! \left\{ \! \mathcal{D}_{\rho,\,k,1}(\|T\|,\|T\|_N) \, ; \, \|T\| \! \leq \! \frac{1}{k} \sqrt{\frac{\rho}{\rho\!-\!2}} \right\}. \end{split}$$

Since the curve $\mathcal{G}_{\rho, k, 1}(\|T\|, \|T\|_N)$ contacts the envelope of $\mathcal{G}_{\rho, k, r}(\|T\|, \|T\|_N)$

$$\|T\|_{N}$$
)=0 at $E'\left(\frac{1}{k}\sqrt{\frac{\rho}{\rho-2}}, \frac{\rho}{\rho-1}\right)$, we have $\mathcal{Q}_{\varrho,k}(\|T\|, \|T\|_{N}) = \mathcal{Q}_{\varrho,k,1}^{L}(\|T\|, \|T\|_{N}) \cup \mathcal{Q}_{E(\varrho,k)}(\|T\|, \|T\|_{N}).$

The slope of the envelope of $\mathcal{G}_{\rho,k,r}(\|T\|,\|T\|_N)=0$ is less than that of $\mathcal{G}_{\rho,1,r}(\|T\|,\|T\|_N)=0$ and the curve $\mathcal{G}_{\rho,k,1}(\|T\|,\|T\|_N)=0$ lies lower than the curve $\mathcal{G}_{\rho,1,1}(\|T\|,\|T\|_N)=0$. Hence we get

$$\mathcal{Q}_{\rho,k}(\|T\|,\|T\|_N)\subset\mathcal{Q}_{\rho,1}(\|T\|,\|T\|_N) \quad \text{for all } k\in[1/2,1]$$

consequently

$$\mathscr{Q}_{
ho}(\!\parallel\!T\!\parallel,\,\parallel\!T\!\parallel_{N})\!\equiv\!\bigcup_{rac{1}{2}\leq k\leq 1}\mathscr{Q}_{
ho,k}(\!\parallel\!T\!\parallel,\,\parallel\!T\!\parallel_{N})\!=\!\mathscr{Q}_{
ho,1}(\!\parallel\!T\!\parallel,\,\parallel\!T\!\parallel_{N}).$$

 $\mathcal{D}_{\rho}(\|T\|, \|T\|_{N}) \equiv \bigcup_{\frac{1}{2} \leq k \leq 1} \mathcal{D}_{\rho,k}(\|T\|, \|T\|_{N}) = \mathcal{D}_{\rho,1}(\|T\|, \|T\|_{N}).$ Hence if $\sqrt{\frac{\rho}{\rho - 2}} \geq \rho$ i.e., $2 \leq \rho \leq \sqrt{2} + 1$, $\mathcal{D}_{\rho}(\|T\|, \|T\|_{N})$ is enclosed by the three lines $||T||_N = ||T||$, $||T||_N = 1/2||T||$, $||T|| = \rho$ and the curve $\mathcal{F}_{\rho,1,1}(||T||, ||T||)$ $||T||_N$ = 0 (see Fig. 2), if $\sqrt{\frac{\rho}{\rho-2}} \leq \rho$, i.e., $\rho \geq \sqrt{2} + 1$, $\mathcal{D}_{\rho}(||T||, ||T||_N)$ is enclosed by the four lines $\|T\|_{\scriptscriptstyle N} = \|T\|$, $\|T\|_{\scriptscriptstyle N} = 1/2\|T\|$, $\|T\| = \rho$, the envelope $||T||_N = \frac{\sqrt{\rho(\rho-2)}}{\rho-1}||T||$, and the curve $\mathcal{G}_{\rho,1,1}(||T||, ||T||_N) = 0$ (see Fig. 1).

In Fig. 1 the curve AE (AD in Fig. 2) and the envelope line ED(DE in Fig. 2) are respectively given by

$$egin{aligned} f_1(
ho) \; ; \; & \|T\|_N = rac{
ho-2}{2(
ho-1)} \, & \|T\|^2 + rac{
ho}{2(
ho-1)} \ & f_E(
ho) \; ; \; & \|T\|_N = rac{\sqrt{
ho(
ho-2)}}{
ho-1} \, & \|T\|. \end{aligned}$$

 $f_1(\rho)$ contacts $f_E(\rho)$ at $E\left(\sqrt{\frac{\rho}{\rho-2}}, \frac{\rho}{\rho-1}\right)$. Moreover when $\rho \to \infty$, $\frac{\rho-2}{2(\rho-1)}$ gradually tends to 1/2 and the slope of $f_E(\rho)$, $\frac{\sqrt{\rho(\rho-2)}}{\rho-1}$ gradually tends to 1. Consequently the point E closes to the point A as $\rho \to \infty$ and hence the line OA may be considered as the envelope for $\rho = \infty$. As well known, for a every bounded operator T the following inequality holds $1/2 \|T\| \le \|T\|_N \le \|T\|$. Thus we may put

 C_{∞} = (the set of all bounded operators)

and

$$\mathcal{Q}_{\infty}$$
 = the whole sector $\{(\|T\|, \|T\|_N); 1/2\|T\| \leq \|T\|_N \leq \|T\|\}$.

When $\rho \rightarrow 2$, the slope $\frac{\rho-2}{2(\rho-1)}$ of $f_1(\rho)$ and the intercept $\frac{\rho}{2(\rho-1)}$ of $||T||_N$ gradually close to 0 and 1 respectively, that is, the points D and C gradually close to the same point B.

As stated in the previous paper [4] the triangular domain OAF and OAB indicate the necessary and sufficient conditions for T to belong to C_1 and C_2 respectively. The line OA indicates the degenerated domain which gives the necessary and sufficient condition for a normaloid* operator T to belong to C_{ρ} ($0 \leq \rho \leq 1$) ([4]).

An operator T is said to be normaloid if $||T|| = ||T||_N$ or equivalently ||T||equals to the spectral radius of T ([5]).

Fig.1 ρ≧√2+1

Fig.2 2≤p≤√2+1

References

- [1] C. Berger: On the numerical range of an operator (to appear).
- [2] Ch. Davis: The shell of a Hilbert-space operator. Acta Sci. Math., 29, 69-86 (1968).
- [3] T. Furuta: A generalization of Durszt's theorem on unitary ρ -dilatations. Proc. Japan Acad., 43, 594-598 (1967).
- [4] —: Relations between unitary ρ -dilatations and two norms. Proc. Japan Acad., 44, 16-20 (1968).
- [5] P. R. Halmos: Hilbert Space Problem Book. Van Nostrand, The University Series in Higher Mathematics (1967).
- [6] B. Sz-Nagy: Sur les contractions de l'espace de Hilbert. Acta Sci. Math., 15, 87-92 (1953).
- [7] B. Sz-Nagy and C. Foias: On certain classes of power bounded operators in Hilbert space. Acta Sci. Math., 17-25 (1966).