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1. Following [1] [4] [7] an operator T on a Hilbert space H pos-
sesses a unitary p-dilatation if there exist a Hilbert space K containing
H as a subspace, a positive constant p and a unitary operator U on K
satisfying the following representation
(1) Tr=p-PU» (n=1,2, ... )
where P is the orthogonal projection of K on H. Put C, the class of
all operators on H having a unitary p-dilatation on a suitable enlarged
space K. These classes C, (0=0) were introduced by Sz-Nagy and C.
Foias [7]. They have shown a characterization and the monotonity
of C,. In the previous paper [4] we obtained the condition for the
operator norm |T| and the numerical radius | T| 5 satisfied by T in C,
(p=2),
thatisif TeC,(0=<p=<1), then

I 0= (T2
2—p
12ITI=1TIv=q P < TI<
25 (gE=imise)
and if T e C, (1<p<2), then
T| 0Z|T|<1
zimisizs | 2D

In this paper we continue the investigation for classes C, (0=2).
We give a simple necessary condition for T € C,(0=2) related to both
[T| and | Ty and its graphic representation.

2. The following theorems are known and we cite for the sake
of convenience ([2] [4] [7]).

Theorem A. An operator T in H belongs to the class C,if and
only if it satisfies the following conditions

@) ||h||2—2(1—%) Re(zTh, ) + (1—%) |2Th|*=0

for hin H and |2|<1,
(I1) the spectrum of T lies in the closed unit disk.
(i) If p<2, then the condition (I,) implies (II).
Using the notion of shell, Ch. Davis [2] has proved the following prop-
osition.

(1)
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Proposition. If p=2, then the condition (I,) also implies (II).
This proposition was implicitly contained in [7]. Thus we have the
following theorem.

Theorem A’.  An operator T belongs to C, if and only if it satis-
fies the condition (1,).

Theorem B. (, is non-decreasing with respect to the index p in
the sense that

Co,CCo, if 0<0:,=0,.

The following theorems were proved in [4].

Theorem C. (1) If Te(, for 0=p=1, then |T|y< 52
(il) If TeC, for 1=p=2, then | T|y<1. o
Qi) If @—@I T +20— )| T y—p=0 for 0<p<1, then T & C,

(iv) If C—o)|T|*+2(0—D|T|xy—0 =0 for 1=p=2, then T ¢ C,.

Theorem D. (i) If Te(, there exists k in [1/2,1] such that

C-pITI*E+2A—p)|Ty—p=0 for 0=p=<1.
(ii) If TeCl,, there exists k in [1/2,1] such that
@— )| TIH+2(0—D|T|y—p=<0 for 1<p=2.
3. For 2<p, the condition (I, is replaced by
(0—2)||2Th|*—2(0—1) | (Th, h) | rcosyr+ p||k|*=0 for hin H, |2|<1
that ts
() (=2 Th|*r*—2(0— DTk, k)|rcos+ =0
for every unit vector k in H, where z=7re?, 0<r<1,y=¢+6 and ¢ is
the argument of (Th, h).
Since the left hand side of (I,) is positive if it is so when cos =1, (1))
is equivalent to
ayn (0 =2 | Th|r*—2(0—D|(Th, W)|r+p=0
for every unit vector h in H and for 0<r<1.
Lemma. If TeC, for p=2, there exists k in [1/2,1] such that
(=2 TIPkr*—2(0—D|T|yr+p20 for 0=r=1.

Proof. Let {k,} be a sequence of unit vectors which|(Th,, k,)|

converges to |T|y. Then
| (Thy, k) | | Tha | =T,

hence
IT|y<sup|Th,|=|T].
Thus we get
1 _ Ty  suplThyl
2= T - T
Put k:ﬂ%’&i, then 1/2< k<1 and sup|Th,|=k|T|. By (?) we
have

(0—2)| Thy|*r*—2(0—1) | (Ths, 1) |7+ p=0 for 0<r=1,
(0= T|*kr—2(0—D|T|y r+p=0 for 0<r<l.
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By Theorem A’, the proof is complete.
Theorem.
(i) If TeC, for2£p=N2 +1, then
(T O=(TI=D
p—2 2 14
2o—1) I1T)*+ 5o—1) A=|T|=0.
() If TeC, for p=N2 +1, then
IT) O=<|T|<1)

_O=2 e 4 1<|T|<
I Ll CL L

iﬂ_ﬁ)g%wu (ng_z_gllTilgp)-

1/2“T“§”T"N§{

Proof. We put
Fp i (I T I TN =0 =D Tk r*—2(0 =D Tl 57+ 0
and define the following domains in the (|7, | T||y) plane
Do AT ITID=AT T ) 5 Fp o AT 1T Z0
for some 7 ¢€[0,1]}

Do N1 NT W= () Do AT 1T
DTN, 1T = U .CD,,k(llTll 1T -

_sksl
Then by lemma the domain 9,(|| ’.12‘|| , |T|») indicates the necessary con-
dition for T € C, in the sense that if T'e C,, then (|T|, |T|») € DT,
1T ).

Now let us consider the envelope of &, , .(|T||, |T|»)=0 for all »
and fixed p, k as follows. We eliminate the parameter » from the
simultaneous equations

oI T 1T 0)=0
{ 0%, e, (IT 1, I 1) _ ¢
or

then we get the line
1T y="N00=2) |
o—1

as the envelope.
We define Dy, (171, | Tl») and D7 (| T], | T]y) by

DT 1T10= (AT, 1710051715 BEC 2 7
1
D11, 1T10= (D, raIT1 N TIN5 1715 3 25
Since the curve &, , .(|T|, | Tl ) contacts the envelope of &, , .(|T],
I T =0 at B’ (%
DT N T =DZ AT 1T ) U DeunI T 1T -

) , we have
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The slope of the envelope of &, . .(|T|, |T|x)=0 is less than that of
F,1 (T, IT]|5)=0 and the curve &, . ,(|T|, |T]|»)=0 lies lower than
the curve &, . ,(|T[l, [T »)=0. Hence we get

DT ITINCD, TN, 1Ty for all ke [1/2,1]
consequently

DAT 1TIV= U Doil T I TIN=Don(I TN, 1Tl w)-

Sks1
Hence if Jzzzp i.e%, 2<0=<\2+1, D,(|T|, | T| ) is enclosed by the
threelines | T|y=|T|, |Tllxy=1/2|T|, |T|=p and the curve &, ,(|T|,
IT]|5)=0 (see Fig. 2), if \/;—_ﬁtgp, ie., p=2+41, DT, |T]) is
enclosed by the four lines |T|y=|T|, |T|x=1/2|T|, |T|=p, the en-

velope | T||N=wl| T|, and the curve &, , (| T|, | T||x)=0 (see Fig.
1. B

In Fig. 1 the curve AE (AD in Fig. 2) and the envelope line ED
(DFE in Fig. 2) are respectively given by

() [T y=—P=2 | TP4+_—P
f1(0) 5 I T » oD I u+2(p_1)

F5(0) ; uTuN=MuTu-

fl(p) contacts fe(p) at E < ___ _B__> Moreover when p—oo,

o1 Jo(p—2)
2( o— 1) gradually tends to 1/2 and the slope of f;(p), - grad-

ually tends to 1. Consequently the point E closes to the point A as
p—oo and hence the line OA may be considered as the envelope for
p=oc. As well known, for a every bounded operator T the following
inequality holds 1/2|T| | T|»<|T|. Thus we may put
C..=(the set of all bounded operators)
and
9..=the whole sector {(IITH 1T 1/2|ITI=ITIx= T}

When p—2, the slope —~—=_ of f,(0) and the intercept

P

( —1) 2(0—1)
of |T| » gradually close to 0 and 1 respectively, that is, the points D
and C gradually close to the same point B.

As stated in the previous paper [4] the triangular domain OAF
and OAB indicate the necessary and sufficient conditions for T to be-
long to C, and (G, respectively. The line OA indicates the degenerated
domain which gives the necessary and sufficient condition for a norma-
loid* operator T to belong to C, (0=<0<1) ([4D.

*)  An operator T is said to be normaloid if |T||=|T| x or equivalently | 7|
equals to the spectral radius of T ([6]).



No. 10]

ey

Unitary p-Dilatations and Two Norms. II
W THs= 1Tl

t
)
H
|
i
I
i
1
|
|
i
I
i
1
T
i
h
0
|
I
|
|

I ]
! [
i
i
|
1 r=0,9 "A ]‘ Byr2,1)
N |
I 4 N !
p=1.0 9 ;'\' i
!
2 !
Nt H i
Y ;
{F (=2
BT lhe= 124 T |
i :
i i H G
o
t nry=p g
Fig.l pa/Z+1
117}l
T l=) 7
1 E
1 ./

r=0,9 i B
\rg\\ i
r=1,0 ’_x\ E
2 |
A !
; !
ip i
| !
i i

izl j J G i J
1 2 |Tl=p Izl

Fig.2 28piV/E#?

1007



1008 T. FUrRUTA [Vol. 44,

References

[1] C. Berger: On the numerical range of an operator (to appear).

[2] Ch. Davis: The shell of a Hilbert-space operator. Acta Sci. Math., 29,
69-86 (1968).

[3]1 T. Furuta: A generalization of Durszt’s theorem on unitary p-dilatations.
Proc. Japan Acad., 43, 594-598 (1967).

Relations between unitary p-dilatations and two norms. Proc. Japan
Acad., 44, 16-20 (1968).

[51 P. R. Halmos: Hilbert Space Problem Book. Van Nostrand, The Uni-
versity Series in Higher Mathematics (1967).

[6]1 B. Sz-Nagy: Sur les contractions de ’espace de Hilbert. Acta Sci. Math.,
15, 87-92 (1953).

[71 B. Sz-Nagy and C. Foias: On certain classes of power bounded operators
in Hilbert space. Acta Sci. Math., 17-25 (1966).

[4]1



