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1. Introduction. Asequence{T} ofinvertible measure-preserv-
ing transformations in the unit interval [0, 1] is said to be convergent
weakly to the invertible measure-preserving transformation T if

limllfoT--foTII-0 for every integrable function f, with I}" denoting

L-norm. It is well-known that (c) and (fl) in Theorem 1 below are
equivalent.

In this paper we prove that if X is a locally compact metrizable
space and /2 a a-finite Radon measure on X, then the equivalence be-
tween (c) and (/) also holds (Theorem 1). We see that this generalizes
a theorem of Papangelou [2, Theorem 2]. Then it will be natural to
ask: does the metrizability of X be dropped in Theorem 1 when X
is a compact Hausdorff space? Theorem 3 asserts that the answer is
negative.

2. An extension of Papangelou’s theorems. Let X be a locally
compact Hausdorff space and the a-field generated by the open sub-
sets of X. The members of will be called the Borel subsets of X.
Let/A be a measure on such that

/2x(K) is finite for every compact subset K of X,
(ii) /l(V)-sup{/21(K) K is compact and K V} for every open

subset V of X,
(iii) /(A)-inf{/(V) V is open and A V} for every Borel subset

AofX.
We denote by p the outer measure induced by/A and denote by ) the
a-field of all subsets of X which are z-measurable. We say/2 on )

a Radon measure on X. A subset E of X which belongs to Y will be
called measurable in X.

We denote by G the group of all invertible /2-measure-preserving
transformations in X.

Difinition. The sequence {T) in G converges to T e G weakly if
lim [2(TA / TA)=0 for every measurable subset A of X with/2(A) ,
equivalently, if lim lifoT-foT II--0 for every f e L1.

Theorem 1. Let X be a locally compact metrizable space and [2
a a-finite Radon measure on X. If T, T (n-1, 2, 3, ...) are in G then
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() and (fl) below are equivalent:
(a) {T} converges to T weakly.
() Every subsequence {T()} of {Tn} has a subsequence

which converges to T almost everywhere.
The proof of Theorem 1 requires some lemmas.
Lemma 1. Let ,a be a a-finite Radon measure on a locally compact

Hausdorff space X. Then there exists a a-compact set E such that
/(X--E)=O, where E is the interior of E.

Proof. Let X= Xn and Xn (n-- 1, 2, 3, .) be mutually disjoint
=1

Borel sets with finite measure. Let e be an arbitrary positive rational
number. By the property (iii) of , there exists an open set V in X
such that/(V--X)<$/2n+ and Xn Vn. Then by the property (ii)

of/, there exists a compact set K in X such that /(V--Kn)<e/2n+
and KnC Vn. Hence we have

[2(Kn q- Xn)<:/a(K + Vn) + Ia(V + X=)< e/2n+*q e/2n+--/2n.
Therefore

(X-- [.J Kn) <__ , /z(Kn nt- Xn) / 2n .
=1 =i

Now if we choose a compact set K(e) such that (K(e))
we put

E= tJ {K(e)In= 1, 2, 3, e is a positive rational number}
then E is a-compact and/(X--E)=0. The proof is completed.

Let T and T. be mappings of X into itself. Then we define the
mapping denoted by TX T of X into Xx X as follows"

(TX TOx=(Tx, Tx) (x e X).
Lemma 2. Let X be a locally compact metrizable space and/ a

a-finite Radon measure on X. If T and T are measure-preserving

transformations of (X, , l) into itself, then the inverse image
(T X T)- (B) of every Borel subset B of Xx X is a measurable subset
of X.

Proof. For the proof if it sufficient to show that (TX T)-(V) is
a measurable subset of X for any open subset V of Xx X. Let V be
open in XX X. By Lemma 1 there exists a a-compact subset E of X
such that/(X--E) =0. Evidently E is separable. Let {x In= 1,2,3,.
mE, and put F- {Xn In= 1, 2, 3, }-. Let d be a metric on X which
is compatible with the topology of X. Then we have
V ffl (FF)

{ U(x)’U(X’)aresme-neighbrhdsx’ tc U(x)x U(x) x, respectively, where is rational and
U(Xn) X U(xm)c V

In fact, if (x, y) e V C (F x F) then there exist e-neighborhoods U(x) and
U(y) such that U(x)x U(y)cV. Since {x[n=l, 2, 3, ...} is dense in
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F, then for some x and x it follows that d(x, x)e/3 and d(y, x,)
/3. If U(Xn) and U(x,)are 2/3-neighborhoods of x and x,
respectively, then (x, y) e U(x) U(x,) V. Hence

(T1 x T.)-I(V)
=(T1 x T2)-I(V--(Fx F)) [3 (TI x T)-(V 1 (Fx F))
=(T x T2)-(V--(Fx F)) [3 (T x T)-( [3 {U(x) x U(x)})
=(T1 x T)-(V--(Fx F)) [3 ){(T1 x T)-(U(xn) x U(x))}. 1 )

On the other hand, (T x T)-(V--(Fx F)) is contained in T(X--F)
U T;(X--F)of measure zero and so it is measurable. The measur-
ability of (T X T)-(U(xn) X U(x)) is now obvious. By (1), (T x T)-(V)
is a countable union of measurable subsets of X and hence it is
measurable. This completes the proof.

Now using the above lemmas, we prove Theorem 1.
Proo of Theorem 1. (c) implies (/9)" By Lemma 1, there exists

a a-compact set E-- {K In-1, 2, 3, } such that K is compact for
each n and [(X--E)-O. Since E is separable, there exists a count-
able set {Xn In-- 1, 2, 3, } in E such that {Xn In-- 1, 2, 3, }- E.
We putF-{xnln=l, 2,3,...}-. ThenFE. Thus

[(X--F)--O. (2)
Let F be the one point compactification of F. Since F is a compact
Hausdorff space with countable open basis, F is metrizable with some
metric d. If we denote by (F) the space of all real-valued contin-
uous functions on F, then using the Stone-Weierstrass theorem it
can be easily shown that (F) is separable relative to its uniform
topology. Since the space 00(F) of all real-valued continuous functions
on F with compact supports is a subspace of (F), 00(F) is separable
relative to its uniform topology. Let {fl]- 1, 2, 3, } be a countable
dense subset of 00(F). We extended f to g on X as follows" g(x)
=f(x) if x e F and g=0 on X-F. Then g is an integrable function
on X. By (a), we have

lim (goTn)x--(goT)xldl(x)--O
for ]--1, 2, 3, Thus for each ] there exists a subsequence
o {T} such that

lim g(T(,n)X)--g(Tx) a.e. ( 3 )

Therefore we can apply the Cantor diagonalization technique to obtain
a subsequence {T()} of {Tn} and a set N of measure zero such that if
xeN

lim g(T(n)X)-g(Tx) for each ]. 4

Then we see that
lim T()x-Tx a.e. 5

In fact, N T-(X--F)LJ{T(X--F)In=I 2, 3, ...} is o measure
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zero, and if x e N[J T-(X--F) U [._J{T(X--F) In-1 2, 3, ...} then
Tx, Tx e F. ( 6 )

Let V(Tx) be a neighborhood of Tx such that V(Tx)c F and V(Tx)-
is compact. Let h be a continuous function on X such that 0<__h<=l,
h(Tx)-I and h-0 on X--V(Tx). The restriction of h to F is a func-
tion of 00(F). Thus there exists an i0 such that

h(y) fo(Y) < 1 / 3 or all y e F. ( 7 )
Since x e N,

lim go(T()x)-- go(TX).
Hence there exists some No such that n>=No implies go(T()x)--go(TX)l
1/3. Comparing (6) and (7), it ollows that if n>=No then
Ih(Tx)--fo(T()x)l 2/3. Since h(Tx)-l, this implies that
1/3 or n>=No. Then from (7),

h(T()x)0 for each n>=No. 8 )
This implies that (T()x} converges to Tx.

(fl) implies ()" By virtue o Lemma 2, the proof runs on the
same line as that of corresponding part o [2, Theorem 2], and so we
omit the proo here.

Theorem 2. Let X be a locally compact metrizable space and
a a-finite Radon measure on X. Let G be the group of all automorphisms

of the measure space (X, , /). The weak topology on G is the finest
topology % such that if a sequence (T) in G converges to a transforma-
tion T in G almos everywhere then %-lim Tn T.

Proof. A proo analogous to that o [2, Theorem 3] suffices.

:. A counteroexample for a compact non-metrizable space. In
this section we show that the equivalence between () and (/) in
Theorem I does not necessarily hold when X is a compact non-metri-
zable Hausdorff space and/ a. Radon measure on X.

Let A be any nonvoid index set and let or each in A there cor-
respond a compact abelian group H. with the normalized Haar measure, on !):),, where . is the a-field o the .-measurable subsets of H..
We denote by ((R)H., (R)!ff,, (R)].) the product measure space of the
measure spaces (H., ., .). Then we have the following

Lemma :. The above (R). is the restriction to (R). of the
normalized Haar measure m on H=_(R)H. considered as the direct
topological group of H.. Moreover the outer measure induced by
coincides with the outer measure induced by m.

Proof. The first half of Lemma 3 is well-known (see or example
[1, 13 and (15.17. ])]), hence it suffices to prove the second half.

Let E be any m-measurable subset of H. Then it is known that
there exist Baire subsets E and E of H such that EEE and
m(E:--E)-O (see [1, (19.30)]). Here we call B a Baire subset of H if
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B is a member of the a-field generateded by the open subsets of H
written in the form {xeHIf(x)O} by some real-valued continuous
function f on H. Let V be an open subset of H written in the above
form. Then V is a-closed. Since H is compact, V is a-compact.
Then it is easy to see that V is a countable union of open sets which
are members of (R). This implies that every Baire subset of H be-
longs to (R). This together with the first half of Lemma 3 implies
that

(R)2,(E1) m(E) (R)2,(E).
The second half of Lemma 3 is now obvious.

Theorem :. There exist a compact non-metrizable abelian group
H with the normalized Haar measure m and a sequence {Tn} of in-
vertible m-measure-preserving transformations in H such that {T}
converges to the identity transformation I in H, but for any subsequence

{T()} of {T} lim T()x does not exist for any x in H.

Proof. Let K be the circle group and (K, , 2) the normalized
Lebesgue measure space. We define a sequence {S} of invertible 2-
measure-preserving transformations in K as follows"

S exp(it)
exp(i(t + )) if 0 t 2 or t + / 2
exp(it) if /2t or +/2t2,
exp(it) if Ogt=/2_ or gt+/2_

S exp(it)
.exp(i(t + )) if / 2 t or + / 2 t 2,

S exp(it)
exp(i(t + u)) if Og t / 4 or t u + /4
exp(it) if / 4 t or + /4 t 2,
exp(it) if Ot/4, /2t+/4

Sexp(it) or + /2g t 2
(exp(i(t+)) if /4t/2 or +/4t+/2,

and so on.
It is obvious that {S} converges to the identity transformation in K
in measure, but lim Sx does not exist for any x in K. Let be the

set of all subsequences {k(n)} of {n}. We note that the cardinal number
of is equal to 2. We consider the product measure space (@K((),
c(), c()) o (Kc(), c(), 2c()), where (K(), (), 2())
=(K, , 2) or all {k(n)}e. Then the compact abelian group

H@K() is not metrizable. In act there is no countable open
basis at the identity of H, and so H is not metrizable.

For each {k(n)} e we define a sequence {S()} o invertible 2-
measure-preserving transformations as ollows" S():S if ]k(1),
and S()-S if k(m- 1) <]k(m). For each ](]- 1, 2, 3, ...), let T
be a transformation of H onto H defined by

Tx-(S()x())(() ( 9 )
or x-(x(())(() . Then (T} is a sequence o invertible 2[())-
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measure-preserving transformations in H.
On the other hand, by Lemma 3 (R)2 is the restriction of the

normalized Haar measure m H to the a-field (R) and the outer
measure induced by (R), coincides with the outer measure induced
by m. Thus {T} is a sequence of invertible m-measure-preserving
transformations in H. Let V be a neighborhood of the identity of H
in the form (R)V, where V is an open neighborhood of the
identity of K, but it coincides with K( except for finitely many
coordinates {k(n)} e (R). Let I be the identity transformation in H.
Since {S} converges to the identity transformation in K, it is easily
seen that

lim m{x e H t(Tx)(Ix)- e V} =0. (10)

This implies that {T} converges to I in measure (in reference to the
definition of convergence in measure in general case, see [2, Definition
1]). By virtue of [2, Theorem 1], {T} converges to I weakly. But
from the construction of {T}, for any subsequence {T} of {T} lim

T()x does not exist for any x in H. The proof is completed.
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