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1. Introduction. A sequence{T,}of invertible measure-preserv-
ing transformations in the unit interval [0, 1] is said to be convergent
weakly to the invertible measure-preserving transformation 7T if
lim| foT,— foT| =0 for every integrable function f, with | - | denoting

Lnorm. Itis well-known that (o) and (B) in Theorem 1 below are
equivalent.

In this paper we prove that if X is a locally compact metrizable
space and g a o-finite Radon measure on X, then the equivalence be-
tween («) and () also holds (Theorem 1). We see that this generalizes
a theorem of Papangelou [2, Theorem 2]. Then it will be natural to
ask: does the metrizability of X be dropped in Theorem 1 when X
is a compact Hausdorff space? Theorem 3 asserts that the answer is
negative.

2. An extension of Papangelou’s theorems. Let X be a locally
compact Hausdorff space and B the g-field generated by the open sub-
sets of X. The members of B will be called the Borel subsets of X.
Let y, be a measure on B such that

(i) wm(K) is finite for every compact subset K of X,

(i)  p(V)=sup{p,(K)|K is compact and KC V} for every open

subset V of X,
(i) p(A)=inf{y,(V)|V is open and AC V} for every Borel subset
A of X.
We denote by p the outer measure induced by x, and denote by 9% the
o-field of all subsets of X which are p-measurable. We say ¢ on It
a Radon measure on X. A subset E of X which belongs to I will be
called measurable in X.

We denote by G the group of all invertible p-measure-preserving
transformations in X.

Difinition. The sequence {T,} in G converges to T € G weakly if
lim p(T, A+ TA)=0 for every measurable subset A of X with p(4)<oco,

n—roo

or equivalently, if lim || foT,— foT| =0 for every f e L

n—+o

Theorem 1. Let X be a locally compact metrizable space and p
o g-finite Radon measure on X. IfT,T,(n=1,2,8,...)arein G then
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(a) and (B) below are equivalent :

(@) {T,} converges to T weakly.

(B) Ewvery subsequence {T;,} of {T,} has a subsequence {T ey}

which converges to T almost everywhere.

The proof of Theorem 1 requires some lemmas.

Lemma 1. Let ¢ be a o-finite Radon measure on a locally compact
Hausdorff space X. Then there exists a o-compact set E such that
pX—E°)=0, where E° is the interior of E.

Proof. Let X=|JX, and X, (n=1, 2, 3, - - -) be mutually disjoint
Borel sets with finite nrﬁleasure. Let ¢ be an arbitrary positive rational
number. By the property (iii) of p, there exists an open set V, in X
such that p(V,—X,)<¢/2"*'and X,CV,. Then by the property (ii)
of p, there exists a compact set K, in X such that u(V,—K,)<e/2"*!
and K,CV,. Hence we have

pPE+X)S K+ V) + pu(V,+X,)<eg /2t 4/ 2nt =g 27,
Therefore

Now if we choose a compact set K,(¢) such that (K,(¢))°DK,, and if
we put

E=U{K,e)|n=1,2,3, ... ; ¢ is a positive rational number}
then F is g-compact and p(X—E°)=0. The proof is completed.

Let T, and T, be mappings of X into itself. Then we define the
mapping denoted by T, X T, of X into X X X as follows:

(T, XTYx=(Tx, T)x) (x e X).

Lemma 2. Let X be a locally compact metrizable space and p a
o-finite Radon measure on X. If T, and T, are measure-preserving
transformations of (X, M, p) into itself, then the inverse image
(T, X T, *(B) of every Borel subset B of XXX is a measurable subset
of X.

Proof. For the proof if it sufficient to show that (T, X T)-X(V) is
a measurable subset of X for any open subset V of XX X. Let V be
open in XX X. By Lemma 1 there exists a o-compact subset E of X
such that (X —FE)=0. Evidently E is separable. Let {z,|n=1,2,3,...}-
DE, and put F={z,|n=1,2,3, ---}-. Let d be a metric on X which
is compatible with the topology of X. Then we have
VAWFXF)

U(z,), UX,) are some e-neighborhoods of z,,
Zn, respectively, where ¢ is rational and

Uk )X Ux,)cV

In fact, if (x, y) € VN (F X F) then there exist e-neighborhoods U(x) and
U(y) such that Ux)X U(y)cV. Since {z,|n=1,2,38, ---} is dense in

c U{U@) X Ux,)
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F, then for some z, and x,, it follows that d(x, x,)<e¢/8 and d(y, x,,)
<e¢/3. If Uz, and U(x,) are 2¢/3-neighborhoods of z, and x,,
respectively, then (z, y) € U(x,) X U(x,,)CV. Hence
(T, XT)~(V)
=T, XT)7(V=EFXFHUT, XT)(VNEFXF))
=T XT)(V-FXFHUT, XT)(U{U(x,) X Ux,)}
=(T,XT)(V-FXF) U (T, X TY~"(U(x,) X Ulx,))}. (1)
On the other hand, (T, X T,)~Y(V — (F' X F')) is contained in T;(X —F)
UT;YX —F) of measure zero and so it is measurable. The measur-
ability of (T, X T))~*(U(x,) X U(x,)) is now obvious. By (1), (T, X Ty V)
is a countable union of measurable subsets of X and hence it is
measurable. This completes the proof.
Now using the above lemmas, we prove Theorem 1.
Proof of Theorem 1. (a) implies (8): By Lemma 1, there exists
a g-compact set E=U{K,|n=1, 2, 3, -.-}such that K, is compact for
each n and u(X—E°)=0. Since E is separable, there exists a count-
able set {z,|n=1,2,3, ...} in E such that {x,|n=1,2,3,...}"DE.
We put F={z,|n=1,2,8, ..-}-. Then F°DE°. Thus
X —F°)=0. (2)
Let F., be the one point compactification of F. Since F', is a compact
Hausdorff space with countable open basis, F'., is metrizable with some
metric d. If we denote by €(F'.) the space of all real-valued contin-
uous functions on F,, then using the Stone-Weierstrass theorem it
can be easily shown that €(F'.) is separable relative to its uniform
topology. Since the space €,(F) of all real-valued continuous functions
on F' with compact supports is a subspace of €(F.,), €,(F) is separable
relative to its uniform topology. Let {f;]7=1,2, 3, ..} be a countable
dense subset of € (F). We extended f; to g; on X as follows: g,(x)
=fx)if ve F and g,=0 on X—F. Then g, is an integrable function
on X. By (a), we have
lim X|(gjoTn)x—(gjoT)x|dy(x)=0

for j=1,2,8, .... Thus for each j there exists a subsequence {7, ,,}
of {T,} such that

lim g (T, %) =g,(Tx) a.e. (3)

Therefore we can apply the Cantor diagonalization technique to obtain

a subsequence {T';,,} of {T,} and a set N of measure zero such that if
xe N

lim g,(T @) =9,(T) for each j. (4)

n—o

Then we see that
lim T2 =Tx a.e. (5)

n—oo

In fact, NUT* X -F°)UU{T,"X—F°)|n=1,2,3, ---}is of measure
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zero, and if e NUT (X —-F°)U T, (X—F°)|n=1,2,3, ---} then
Te, T,xeF. (6)
Let V(T'x) be a neighborhood of T« such that V(Tx)c F° and V(Tx)~
is compact. Let & be a continuous function on X such that 0<h<1,
W(Tz)=1and h=0 on X—V(Tx). The restriction of 2 to F is a func-
tion of €, (F). Thus there exists an 4, such that
| Ry —Fi()| <1/3  forallyekF. (7)
Since x ¢ N,
lifg gio(Tk(n)x)=gio(Tx)-
Hence there exists some 7\70 such that n= N, implies | g;, (T ) — 9:,(T2)|
<1/3. Comparing (6) and (7), it follows that if n=N, then
|mM(T2)— fi(Trmy®) | <2/3. Since h(Tx)=1, this implies that f; (T .,®)
>1/8 for n=N,. Then from (7),
MT 0y 2) >0 for each n=N,. (8)
This implies that {T';,,x} converges to Tx.

(8 implies (@): By virtue of Lemma 2, the proof runs on the
same line as that of corresponding part of [2, Theorem 2], and so we
omit the proof here.

Theorem 2. Let X be a locally compact metrizable space and p
a o-finite Radon measure on X. Let G be the group of all automorphisms
of the measure space (X, M, p). The weak topology on G is the finest
topology T such that if a sequence {T,} in G converges to a transforma-
tion T in G almost everywhere then T—lim T,=T.

Proof. A proof analogous to that of [2, Theorem 3] suffices.

3. A counter-example for a compact non-metrizable space. In
this section we show that the equivalence between (a) and (B) in
Theorem 1 does not necessarily hold when X is a compact non-metri-
zable Hausdorff space and ¢ a Radon measure on X.

Let A be any nonvoid index set and let for each « in A there cor-
respond a compact abelian group H, with the normalized Haar measure
A, on IM,, where I, is the g-field of the A -measurable subsets of H,.
We denote by (®H,, M., ®4,) the product measure space of the
measure spaces (H,, M,, 4,). Then we have the following

Lemma 3. The above @A, is the restriction to XM, of the
normalized Haar measure m on H=QH, considered as the direct
topological group of H,. Moreover the outer measure induced by ®A,
coincides with the outer measure induced by m.

Proof. The first half of Lemma 3 is well-known (see for example
[1, §13 and (15.17. 7)]), hence it suffices to prove the second half.

Let E be any m-measurable subset of H. Then it is known that
there exist Baire subsets K, and F, of H such that E,CECE, and
m(E,—E)=0 (see [1, 19.30)]). Here we call B a Baire subset of H if
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B is a member of the o-field generateded by the open subsets of H
written in the form {x ¢ H| f(x) >0} by some real-valued continuous
function f on H. Let V be an open subset of H written in the above
form. Then V is g-closed. Since H is compact, V is o-compact.
Then it is easy to see that V is a countable union of open sets which
are members of ®IM,. This implies that every Baire subset of H be-
longs to ®I,. This together with the first half of Lemma 3 implies
that
RALE)=m(E) =Q2,(E)).

The second half of Lemma 3 is now obvious.

Theorem 3. There exist a compact non-metrizable abelian group
H with the normalized Haar measure m and a sequence {T,} of in-
vertible m-measure-preserving transformations in H such that {T,}
converges to the identity transformation I in H, but for any subsequence
{Tiny} of {T,} lim Ty does not exist for any x in H.

Proof. Let K be the circle group and (K, I, ) the normalized
Lebesgue measure space. We define a sequence {S,} of invertible 4-
measure-preserving transformations in K as follows:

S, exp(it) = {exp(i(t—\—n-)) if 0<5t<rw/2 or nt<m+7w/2
! exp(it) if m/2<t<morm+m/2Z5t<2r,

S exp(it):{eXp(it) if 05t<n/2 or w<t<m+xm/2
: exp(i(t+m) if n/2<t<zw or w+7m/25t<2m,

) if 0<t<m/4 <
Saexp(it)={exp(7’(t+n)) if 0<t<m/4 or <t<m+m/4

exp(it) if n/4<t<7w or w4 7/4=t<2m,

exp(it) if 0<t<n/4, m/2<t<m+r/4
&,exp(it):{ or 7+ m/2=5t<2r

exp(i(t+n)) if n/4<t<w/2 or w4 n/4Zt<m+m/2,

and so on.
It is obvious that {S,} converges to the identity transformation in K
in measure, but lim S,z does not exist for any « in K. Let © be the

n—c

set of all subsequences {k(n)} of {n}. We note that the cardinal number
of & is equal to 2®. We consider the product measure space (QK (),
@My i) oFf Eeemny Mgy Awenr)s Where (Kieyys Mipenrys Agecnr)
=(K, M, 2) for all {k(n)}eS. Then the compact abelian group
H=Q®K, isnot metrizable. In fact there is no countable open
basis at the identity of H, and so H is not metrizable.

For each {k(n)} € ® we define a sequence {S{*™} of invertible 4-
measure-preserving transformations as follows: Sik™=S8, if j<Fk(1),
and SF™ =S, if k(m—1)<j<k(m). For each j(j=1,2,3,-..),let T,
be a transformation of H onto H defined by

T jo =S¥ ) wm) (9)
for = (ZuwmDwm) €S- Then {T,} is a sequence of invertible &4 y-
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measure-preserving transformations in H.

On the other hand, by Lemma 8 ®A4;,,, is the restriction of the
normalized Haar measure m H to the ¢-field ®M,.,,, and the outer
measure induced by ®4;,,; coincides with the outer measure induced
by m. Thus {T,} is a sequence of invertible m-measure-preserving
transformations in H. Let V be a neighborhood of the identity of H
in the form ®V ), where V., is an open neighborhood of the
identity of K, but it coincides with K ,,, except for finitely many
coordinates {k(n)} e S. Let I be the identity transformation in H.
Since {S;} converges to the identity transformation in K, it is easily
seen that

limm{x e H|(T,x)(Ix)"*¢ V}=0. (10)

Joo

This implies that {T';} converges to I in measure (in reference to the
definition of convergence in measure in general case, see [2, Definition
1]). By virtue of [2, Theorem 1], {T,} converges to I weakly. But
from the construction of {T,}, for any subsequence {T,} of {T';} ljim

T % does not exist for any « in H. The proof is completed.
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