6. On Zero Entropy and Quasi-discrete Spectrum for Automorphisms

By Nobuo Aoki

Department of Mathematics, Josai University, Sakado, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 13, 1969)

§1. Abramov [1] has defined the notion of an automorphism with quasi-discrete spectrum. Hahn and Parry [7] have developed an analogous theory for homeomorphisms of compact spaces, and Parry [10] has shown that the maximal partition of an ergodic affine transformation of a compact connected metric abelian group and that of the ergodic affine transformation with quasi-discrete spectrum coincide. In §3 we prove that totally ergodic automorphisms belonging to $C_2(T)$ [3] have quasi-discrete spectrum if and only if the automorphisms have zero entropy. The study in this paper depends on [4], [10], and [16].

§2. Let (X, Σ, m) be a Lebesgue measure space with normalized measure m. We denote by $\Sigma(m)$ the Boolean σ -algebra by identifying sets in Σ whose symmetric difference has zero measure, and the measure *m* is induced on the elements of $\Sigma(m)$ in the natural way. Let $L^2(\Sigma)$ be the Hilbert space of complex-valued square integrable functions defined on (X, Σ, m) and let $L^{\infty}(\Sigma)$ be the Banach space of complex-valued m essentially bounded functions defined on (X, Σ, m) but sometimes we use $L^{2}(\Sigma(m))$ instead of $L^{2}(\Sigma)$. Let T be automorphism of (X, Σ, m) and we denote by $V_T: f(x) \rightarrow f(Tx)$ $(x \in X, f \in L^2(\Sigma))$ the linear isometry induced by T. T is said to be totally ergodic if T^n is ergodic for every positive integer n and to be a Kolmogorov automorphism if there exists sub σ -field \mathcal{B} such that (1) $\mathcal{B}\subset T^{-1}\mathcal{B}$ (2) $\bigcap_{n=-\infty}^{\infty} T^n \mathcal{B} = \mathcal{Q}$ (\mathcal{Q} a field whose measurable sets are measure zero or one) and (3) $\bigvee_{n=-\infty}^{\vee} T^n \mathcal{B} = \Sigma$. If there is a basis **O** of $L^2(\Sigma)$ each term of which is a normalized proper function of T, then T is said to have discrete spectrum. Clearly O includes a circle group K. If T is ergodic then it turns out that |f| = 1 a.e. for each $f \in O$, and that $O = K \times O(T)$ where O(T) is a subgroup of O isomorphic to the factor group O/K. If T is totally ergodic and has discrete spectrum, then $C_1(T) \neq C_2(T) = C_3(T)$ [3]. If T is ergodic and has discrete spectrum, then for every $Q \in C_2(T)$ there exist almost automorphisms W, S such that W has each function of O(T) as a proper function and V_s maps O(T) onto itself, and Q = WS a.e. [3] and [4]. Let T be ergodic, then for an automorphism S satisfying $V_s O(T) = O(T)$ we denote by B(S) the homomorphism on O(T), $B(S)f = f^{-1}V_{s}f$. We put $O_{\mathcal{S}}(T)_n = \{f \in O(T) : B(S)^n f = 1 \text{ a.e.}\}, n = 1, 2, \dots$, then it turns out that $O_{S}(T)_{1} \subset O_{S}(T)_{2} \subset \cdots$, and that $O_{S}(T)_{n}$ is a subgroup. Let Q be a totally ergodic automorphism of (X, Σ, m) , we recall the following definition of quasi-proper functions [1]. Let $G(Q)_0$ be a set $\{\alpha \in K :$ $V_Q f = \alpha f \text{ a.e., } \|f\|_2 = 1 \text{ for } f \in L^2(\Sigma) \}.$ For i > 0 let $G(Q)_i \subset L^2(\Sigma)$ be the set of all normalized functions f such that $V_{Q}f = gf$ a.e. where $g \in G(Q)_{i-1}$. The set $G(Q)_i$ is the set of quasi-proper functions of order We put $G(Q) = \bigcup_{i} G(Q)_{i}$. It turns out that |f| = 1 a.e. for each i. $f \in G(Q)$, and that $G(Q) = K \times O(Q)$ where O(Q) is a subgroup of G(Q). Q is said to have quasi-discrete spectrum if G(Q) spans $L^2(\Sigma)$. The definition according to the improved version of entropy is given by Sinai [14] as following : for any finite subfield \mathcal{J} of Σ denote the *entropy* $H(\mathcal{J})$ of \mathcal{J} by $H(\mathcal{J}) = -\Sigma_k m(A_k) \log m(A_k)$ where the sum is taken over the finite atoms A_k of \mathcal{J} and the entropy $h(T, \mathcal{J})$ of an automorphism T with respect to a finite subfield \mathcal{J} is defined by $h(T, \mathcal{J}) = \lim_{n \to \infty} \frac{1}{n} H$ $\begin{pmatrix} \bigvee_{i=1}^{n-1} T^{-j} \mathcal{J} \end{pmatrix}$, and the entropy h(T) of T is defined as $h(T) = \sup\{h(T, \mathcal{J}):$ \mathcal{J} finite, $\mathcal{G} \subset \Sigma$. We can consider T restricted to a T-invariant sub σ -field \mathcal{B} and obtain a corresponding entropy $h_{\mathcal{B}}(T) = \sup\{h(T, \mathcal{J}) : \mathcal{J}\}$ finite, $\mathcal{J} \subset \mathcal{B}$. It is known that T has completely positive entropy if and only if T is a Kolmogorov automorphism [13]. A necessary and sufficient condition that a closed subspace M of $L^2(\Sigma)$ be of the form $M = L^2(\mathcal{C}(m))$ where $\mathcal{C}(m)$ is the smallest σ -algebra of $\Sigma(m)$ with respect to which all functions in M are measurable is that M contain a dense subalgebra consisting of bounded functions, constant functions and their complex conjugations [5]. If β is an ergodic automorphism on a compact abelian group, then β is a Kolmogorov automorphism [12].

§3. Throughout we consider an ergodic automorphism T of (X, Σ, m) having discrete spectrum.

Proposition 1. Let Q be a totally ergodic automorphism. If Q has quasi-discrete spectrum, then there exist almost automorphisms W, S such that W has each function of O(Q) as a proper function and V_s maps O(Q) onto itself and Q=WS a.e.

Proof. Since Q is a totally ergodic automorphism having quasidiscrete spectrum, O(Q) is an orthonormal base of $L^2(\Sigma)$ [1]. V_Q is an automorphism G(Q) onto itself and a subgroup $K \times 1$ is mapped identically onto itself. We define maps $P: O(Q) \rightarrow O(Q)$ and $R: O(Q) \rightarrow K$ by $V_Q f = Rf \cdot Pf$ for $f \in O(Q)$. Since V_Q is an automorphism G(Q)onto itself, $R(f_1 f_2) = Rf_1 \cdot Rf_2$, $P(f_1 f_2) = Pf_1Pf_2$ a.e. for $f_1, f_2 \in O(Q)$. It turns out that P is an automorphism of O(Q). To define the linear

No. 1]

N. Aoki

isometry, we put $V\left(\sum_{k=1}^{n} r_k f_k\right) = \sum_{k=1}^{n} r_k P f_k(f_k \in O(Q))$. Then V is an isometry which can be extended uniquely to an isometry of $L^2(\Sigma)$ onto itself, and we suppose that V is a linear isometry of $L^2(\Sigma)$ onto itself. The proof of $VL^{\infty}(\Sigma) = L^{\infty}(\Sigma)$ and multiplication of V restricted to $L^{\infty}(\Sigma)$ is similar to a proof in [4]. By multiplication theorem there exists an almost automorphism S such that $V = V_S$ on $L^2(\Sigma)$. Furthermore we define a map $V': O(Q) \rightarrow \{Rf \cdot f : f \in O(Q)\}$ by $V'f = Rf \cdot f$. Then V' has a unique continuous extension V'' on $L^2(\Sigma)$ such that V'f = V''f for each $f \in O(Q)$. By the above way there exists an almost automorphism W such that $V'' = V_W$ on $L^2(\Sigma)$. Let $f \in O(Q)$, then $V_Q f = V_S V_W f$ a.e. Therefore we can conclude that Q = WS a.e.

Proposition 2. Let S be an automorphism satisfying $V_s O(T) = O(T)$ and let W be an automorphism which has each function of O(T) as a proper function. If WS is a totally ergodic automorphism and $O(T) = \bigcup_{n=1}^{\infty} O_s(T)_n$, then WS has quasi-discrete spectrum.

Proof. We put Q = WS. For any $f \in O(T)$, there exists an integer n such that $f \in O_S(T)_n$. We show by induction that if n is the least integer for which $f \in O_S(T)_n$ then f is a proper function of $G(Q)_n$. If $f \in O_S(T)_1$ then $V_Q f = \alpha f$ a.e. Therefore f is a proper function of Q. Suppose now that every $f \in O_S(T)_n$ is a quasi-proper function of $G(Q)_n$. Let f be a function of $O_S(T)_{n+1}$, then $V_Q f = \alpha B(S) f \cdot f$ a.e. and $\alpha B(S) f$ is a quasi-proper function of $G(Q)_n$, by the inductive hypothesis and the fact $B(S)^{n+1}f = B(S)^n(B(S)f) = 1$ a.e. Therefore the function f is a quasi-proper function of $G(Q)_{n+1}$. Since O(T) is an orthonormal base of $L^2(\Sigma)$, we see that Q has quasi-discrete spectrum.

Proposition 3. Let S be an automorphism such that $V_S O(T) = O(T)$ and let W be an automorphism which has each function of O(T) as a proper function. If S is ergodic on (X, C, m) where C is a nontrivial S-invariant sub σ -field of Σ and if O(T)' is a subgroup of O(T) such that $L^2(C) = \overline{\operatorname{span } O(T)'}$, then h(WS) > 0.

Proof. Since O(T)' is a subgroup of O(T), we denote by X' the character group of the discrete abelian group O(T)'. Then X' is a compact metric abelian group with normalized complete Haar measure. Let $\langle \cdot, \cdot \rangle$ denote the pairing between X' and its dual O(T)'. To define the linear isometry we put $V\left(\sum_{k=1}^{n} r_k f_k\right) = \sum_{k=1}^{n} r_k \langle \cdot, f_k \rangle$ ($f_k \in O(T)'$). Then V is an isometry which can be extended uniquely to an isometry of $L^2(\mathcal{C})$ onto $L^2(B)$ (B a complete Borel class of X'). We suppose that V is a linear isometry of $L^2(\mathcal{C})$ onto $L^2(B)$. We observe that $VL^{\infty}(\mathcal{C}) = L^{\infty}(B)$ and V(fg) = VfVg a.e. for $f, g \in O(T)'$. Therefore, by multiplication theorem there exists an isomorphism φ such that $V = V_{\varphi}$.

No. 1]

Now define V', V'' on $L^2(B)$ by $V' = V_{\varphi}V_SV_{\varphi}^{-1}$, $V'' = V_{\varphi}V_WV_{\varphi}^{-1}$ respectively. By Pontrjagin's duality theorem there exist a continuous group automorphism β on X' such that $V' = V_{\beta}$ on $L^2(B)$, and a rotation ξ such that $V' = V_{\xi}$ on $L^2(B)$. Since S is isomorphic to β and S is ergodic on $(X, \mathcal{C}, m), \beta$ is ergodic. Therefore β is a Kolmogorov automorphism and $\xi\beta$ has completely positive entropy. Therefore we have $h_{\mathcal{C}}(WS)$ $= h(\xi\beta) > 0$.

Corollary 1. Let S be an automorphism such that $V_S O(T) = O(T)$. If S is ergodic, then S is a Kolmogorov automorphism.

The proof of the corollary is similar to a proof of Proposition 3.

Corollary 2. Let S be an automorphism such that $V_s O(T) = O(T)$ and let W be an automorphism which has each function of O(T) as a proper function. Then S is a Kolmogorov automorphism if and only if Q = WS is a Kolmogorov automorphism.

Proposition 4. Let S be an automorphism such that $V_s O(T) = O(T)$ and let W be an automorphism which has each function of O(T) as a proper function. If a totally ergodic automorphism Q=WS has zero entropy, then Q has quasi-discrete spectrum.

Proof. Case (I). O(T) is finitely generated. $B(S)^n O(T)$, n=1, 2,... are subgroups of O(T) and $V_S B^n O(T) = B(S)^n O(T)$. If $B(S)O(T) = \{1\}$, then Q has discrete spectrum, i.e. $O_S(T)_1 = O(T)$. If $B(S)O(T) = \{1\}$, then there exists a non-trivial σ -algebra $\mathcal{C}(m)$ such that $L^2(\mathcal{C}(m)) = \operatorname{span} B(S)O(T)$ and $\mathcal{C}(m)$ is invariant under the metric automorphism of S. Suppose now that $\{g \in B(S)O(T) : B(S)g=1 \ a.e.\} = \{1\}$. Then the metric automorphism of S is ergodic on $\mathcal{C}(m)$. This is a contradiction by Proposition 3. Thus we have $O_S(T)_1 \subseteq O_S(T)_2$. Next if $B(S)^2O(T) = \{1\}$, then $O_S(T)_2 = O(T)$. If $B(S)^2O(T) = \{1\}$, then $O_S(T)_2 = O(T)$. If $B(S)^2O(T) = \{0, C, T)_3$. It follows from induction to be either $O_S(T)_n = O(T)$ for some integer n > 0 or $O_S(T)_1 \subseteq O_S(T)_2 \subseteq \cdots \subseteq O_S(T)_n \subseteq \cdots$. But we see that there exists an integer n such that $O_S(T)_n = O(T)$ since O(T) is finitely generated. Therefore, by Proposition 2 Q has quasidiscrete spectrum.

Case (II). O(T) is countable, $O(T) = \{g_1, g_2, \dots, g_n, \dots\}$. Let $g_k \in O(T)$ has an infinite orbit $O(g_k)$ under V_s and let $Y(g_k)$ be a subgroup generated by $O(g_k)$, then $Y(g_k)$ is finitely generated. Because it turns out that $O_1^k \neq \{1\}$ for j=1 where $O_j^k = \{g \in Y(g_k) : B(S)^j g = 1 \text{ a.e.}\}$, $j=1, 2, \dots$. Thus for $g \in O_j^k$ with $g \neq 1$ a.e., $V_S g = g$ a.e. and $g = V_S^{n_1} g_k^{\pm 1} V_S^{n_2} g_k^{\pm 1} \cdots V_S^{n_i} g_k^{\pm 1}$ a.e. Suppose now that $n_1 < n_2 < \dots < n_l$. Then it follows that $Y(g_k)$ is a group generated by $\{g_k, V_S g_k, \dots, V_S^{n_i} g_k\}$. Let $g_i \in O(T)$ have a finite orbit such that $V_S^n g_i = g_i$ a.e. and let $Y(g_i)$ be a group generated by $\{g_i, V_S g_i, \dots, V_S^n g_i\}$. Thus we obtain $O(T) = \bigcup_{k=1}^{\infty} Y(g_k)$. By Case (I) there exists an integer j_k such that $Y(g_k) = O_j^k$

$$= \bigcup_{j=1}^{\infty} O_{j}^{k}. \quad \text{From } O_{S}(T)_{j} = \bigcup_{k=1}^{\infty} O_{j}^{k}, \text{ it follows that } O(T) = \bigcup_{k=1}^{\infty} Y(g_{k}) = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} O_{j}^{k}$$
$$= \bigcup_{j=1}^{\infty} O_{S}(T)_{j}. \quad \text{Therefore, by Proposition 2 we have shown that } Q \text{ has quasi-discrete spectrum.}$$

References

- L. M. Abramov: Metric automorphisms with quasi-discrete spectrum. Amer. Math. Soc. Transl., 39 (2), 37-56 (1964).
- [2] ----: On entropy of flows. Dokl. Akad. Nauk SSSR, 128, 873-375 (1959).
- [3] R. L. Adler: Generalized commuting properties of measure preserving transformations. Trans. Amer. Math. Soc., 115, 1-13 (1965).
- [4] N. Aoki: On generalized commuting properties of metric automorphisms. I. Proc. Japan Acad., 44 (6), 467-471 (1968).
- [5] R. R. Bahadur: Measurable subspaces and subalgebras. Proc. Amer. Math. Soc., 6, 565-570 (1955).
- [6] F. Hahn: On affine transformations of compact abelian groups. Amer. J. Math., 85, 428-446 (1963).
- [7] F. Hahn and W. Parry: Minimal dynamical systems with quasi-discrete spectrum. J. London Math. Soc., 40, 309-323 (1965).
- [8] A. H. M. Hoare and W. Parry: Affine transformations with quasi-discrete spectrum. I. J. London Math. Soc., 41, 88-96 (1966).
- [9] ——: Affine transformations with quasi-discrete spectrum. II. J. London Math. Soc., 41, 529-530 (1966).
- [10] W. Parry: On the coincidence of three invariant σ -algebras associated with an affine transformation. Proc. Amer. Math. Soc., **17**, 1297–1302 (1966).
- [11] L. Pontrjagin: Topological groups. Princeton Univ. Press. Princeton. N.J. (1948).
- [12] V. A. Rohlin: Metric properties of endomorphisms of compact abelian groups. Izv. Akad. Nauk SSSR Ser. Math., 28, 867-874 (1964).
- [13] V. A. Rohlin and Ja. G. Sinai: Construction and properties of invariant measurable partitions. Dokl. Akad. Nauk SSSR, 141, 1038-1041 (1961).
- [14] Y. Sinai: On the notion of entropy for a dynamical system. Dokl. Akad. Nauk SSSR, 124, 768-771 (1959).
- [15] P. Walter: On the relationship between zero entropy and quasi-discrete spectrum for affine transformations. Proc. Amer. Math. Soc., 18, 661-667 (1967).