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1. Introduction. In the previous paper [4], a lattice L is called
a DAC-lattice when both L and its dual are atomistic lattices with the
covering property. The lattice _L of closed subspaces of a linear sys-
tem, appeared in Mackey [2], is an example of a DAC-lattice. In [2;
p. 168], Mackey proved that a pair of elements of .L" is both modular
and dual-modular if and only if it is stable modular. In this paper
we shall show (Theorem 2) that this statement can be proved in gen-
eral DAC-lattices. As a consequence of this result, we shall obtain a
condition on a DAC-lattice which is equivalent to cross-symmetry. In
the last section, we shall show some results on cross-symmetry of the
lattice of closed subspaces of a locally convex space.

2. Symmetry of modular relations. Let a and b be elements of
a lattice. We say that (a, b) is a modular pair (resp. a dual-modular
pair) and write (a, b)M (resp. (a, b)M*) when

(cV a) A b cV (aA b) for every c<__ b
(resp. (cAa)Vb-cA(aVb) for every c>_b).
(Note that (a, b)M* is equivalent to (b, a)M* in the sense of [4].)

A lattice L is called M-symmetric (resp. M*-symmetric) when
(a, b)M implies (b, a)M (resp. (a, b)M* implies (b, a)M*) in L. L is

called cross-symmetric (resp. dual cross-symmetric) when (a, b)M im-
plies (b, a)M* (resp. (a, b)M* implies (b, a)M) in L.

Lemma 1. Let a, b and c be elements of a lattice L.
( If (a, b)M and (aA b, c)M then (al, b A c)M for any element al

of the interval L[aA c, a].
(ii) If (a, b)M then (al, b)M for any aeL[aAb, a] and bl

e L[aA b, b].
Proof. (i) Let aAc<=al<=a. Then aAc--aAc. If d<=bAc,

then by (a, b)M and (aA b, c)M we have
(dV a,) A (b A c) __< (dV a) A b A c-- {dV (aA b)} A c

dV (aA b A c) dV (aA b A c) _<_ (dV a) A (b A c).
Hence (a, b A c)M.

(ii) Assume (a, b)M and let aA b_<_ b_<_ b. Since (aA b, b)M, it

follows from (i) that
(a, b)M or any a e L[aA b, a]- L[aA b, a].
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The following theorem is due to Schreiner (a generalization of [6],
Theorem 6).

Theorem 1. Any cross-symmetric lattice is M-symmetric. Any
dual cross-symmetric lattice is M*-symmetric.

Proof. It is evident that
( 1 (a, b)M in a lattice L if and only if (a, b)M in L[aAb, aVb].
Assume that L is cross-symmetric and let (a, b)M in L. For any
c e L[aA b, a], since (c, b)M by Lemma 1, we have (b, c)M* by the as-
sumption. Hence

(cVb) Aa=aA(bV c)-(aAb)V c-cV(b Aa).
Therefore (b, a)M in L[aAb, aVb], and hence (b, a)M in L by (1).
The second statement holds by duality.

:. Modularit in DAC.lattices. A subset S of a lattice L is
called loin-dense in L when

a-V(xeS;x<=a) orevery aeL.
In a lattice L, we write a <b when a< b and there does not exist

ceL with a<c<b.
Let L be a lattice with 0. An element a e L is called an atom

when 0-<a, and a is called finite when it is the join of a finite number
of atoms. L is called finite-modular when (b, a)M for any finite ele-
ment a e L and for any b e L. L is called atomistic when the set of
all atoms is join-dense in L. The following property of L is called
the covering property"

If p is an atom and p $ a then a <aVp.
An atomistic lattice with the covering property is called an AC-lattice.
A lattice L with 0 and 1 is called a DAC-lattice when both L and its
dual L* are AC-lattices.

By [3], Lemma 4, any finite-modular AC-lattice is M*-symmetric,
and by [4], Theorem 2.1, any DAC-lattice is finite-modular, M-sym-
metric and M*-symmetric.

Lemma 2. In a lattice, if (a, b)M, (c, aV b)M and cA (aV b) <= a
then (cV a, b)M and (cV a) A b aA b.

Proof. Wilcox [7], Lemma 1.2.
Lemma :. Let S be a loin-dense set in a lattice L, and let

a, b e L. If (a, b V x)M for every x e S with x$ b then (a, b)M*.
Proof. Let c>__ b. Evidently, (c/ka) V b__< c/X (aV b). Let x e S

and x<=cA(aVb). We shall prove that x<=(cAa)Vb. This is evident
when x<=b. When xSb, we have (a, b Vx)M by the assumption.
Hence

x<=(b Va) A(b V x)-b V{aA(b V x)} =<b V (aA c)-(cAa)Vb.
Since S is join-dense, we have c/k (aV b) =< (cA a) V b.

Lemma 4. Let a and b be elements of an AC-lattice L. If
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(a, x)M for every x >- b then (a, b)M*.
Proof. The set S of all atoms of L is join-dense. If xeS and

x$ b then b b /x by the covering property. Hence this lemma is a
consequence of Lemma 3.

Lemma 5. In a finite-modular AC-lattice L, if (a, b)M* then
(a/ x, b / y)M* for all finite elements x and y.

Proof. By the dual property of Lemma 1 (i),
( 1 ) (a, b)M* and (a/b, c)M* together imply (a, b /c)M*.
Let (a, b)M*. If y is a finite element, then since (a/b, y)M* by [4],
Lemma 2.2 (ii), we have (a, b /y)M* by (l). Similarly, since L is M*-
symmetric, (a, b /y)M* implies (a/ x, b / y)M* or every finite element
X.

Lemma 6. Let a and b be elements of a finite-modular AC-lattice
L. If (a, b)M and (a, b)M* then (a, bl)M* for any bl e L[a/b, b].

Proof. It follows rom [3], Lemma 4 that (a, b)M* is equivalent
to the ollowing (a: 0, b = 0)"

If p is an atom with p <= a/b then there exist atoms q and r such
that p<=q/r, q<_a and r<=b.

Assume (a, b)M and (a, b)M*, and let aA b_<_ b_<_ b. We may as-
sume a=0 and b=0. Let p be an atom with p<=a/b. It suffices to
show that there exist atoms q and r such that p<_q/r, q<=a and r<_b.
Since p<_a/b and (a, b)M*, there exist atoms q and r such that
p<=q/rl, q<=a and r<__b. When p-q, then q--q1 and any atom r<=x
may be used. When pq, by the covering property we have p/q
=q/r, whence r<=p/q<=a/bl. Since (a, b)M, we have

r <= (bV a)/ b bV (aA b)- bl.
Hence q= q and r-rl have the desired property.

Theorem 2. Let a and b be elements of a DAC-lattice L. The
following three statements are equivalent.

(a) (a, b)M and (a, b)M*.
() (a, x)M for every x >- b.
(’) (a, x)M* for every x4b.
Proof. (i) We shall prove that (’) implies (a). We may as-

sume b =0. Since L* is an AC-lattice, there exists an element c with
c-< b in L. Then there exists an atom p such that b c/p. Since
(a, c)M* by (y), we have (a, b)M* by Lemma 5. Moreover, by (’), in
L* we have (a, x)M or every x>-b. Hence, by Lemma 4, we have
(a, b)M* in L*, whence (a, b)M in L. Therefore (,) implies (a).

If (fl) holds, then () holds in L* and hence (a) holds in L.
Therefore (a) holds in L also.

(ii) We shall prove that (a) implies (/). Let x>-b. When
x a/b, then in L* we have aA b <__ x =< b. Hence, by Lemma 6, (a)
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implies (a, x)M* in L*, whence (a, x)M in L. When x$a/b, we take
an atom Io such that x-- b /p. Then pA (b /a)-0, since otherwise we
would have x__< a/b. Since L is M-symmetric, we have (b, a)M and
(p, b /a)M. Moreover, p/ (b /a)-0<__ b. Hence by Lemma 2, we
have (pV b, a)M. Therefore () implies ().

By the duality, () implies (y) also.
Corollary. Le$ L be a DAC-la$$ice (hence L is M-symmetric and

M*-symmetric). L is cross-symmetric if and only if in L
(a, b)M implies (a, c)M for any c b.

L is dual cross-symmetric if and only if in L
(a, b)M* implies (a, c)M* for any cb.

Proof. If (a, b)M, then by the equivalence of () and (/) in
Theorem 2, (a, b)M* is equivalent to (a, c)M for every c:> b.

Remark 1o It follows from this corollary that if a DAC-lattice
L is cross-symmetric then, in L, (a, b)M implies (a/x, b /y)M for all
finite elements x and y. Compare with Lemma 5.

4. The lattice of closed subspaces of a locally convex space.
Let E be a locally convex space. The set L(E) of all closed subspaces
of E forms an irreducible complete DAC-lattice by [4], Corollary 1 of
Theorem 6.1. It was proved by Mackey ([2], pp. 166-167) that a pair
(A, B) in L(E) is dual-modular if and only if the linear sum A /B is
closed in E and that (A, B) is modular if and only if the mapping
’(x, y)x+y of AB into E is a weak homomorphism (a homo-
morphism for weak topologies).

If E is metrisable, then since both the domain and the range of
are Mackey spaces, ? is a weak homomorphism if and only if it is a
homomorphism (see [5], p. 159). If E is a Frchet space (metrisable
and complete), then by Banach’s homomorphism theorem, is a
homomorphism if and only if its range A /B is closed (see [5], p. 77).
Therefore we obtain the following"

Theorem 3. If E is a Frchet space then L(E) is cross-symmet-
ric and dual cross-symmetric (hence (A, B)M, (B, A)M, (A, B)M* and
(B, A)M* are all equivalent).

Remark 2. This theorem is a generalization of Theorem III-13
in Mackey [2]. In [2;p. 173], he showed existence of an incomplete
normed space E such that L(E) is neither cross-symmetric nor dual
cross-symmetric.

Remark 3. Let E be an inner product space. The following
three statements are equivalent.

() E is complete (E is a tIilbert space).
() L(E) is cross-symmetric.

() L(E) is cross-symmetric and dual cross-symmetric.
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The implication (q)(T) follows from Theorem 3, and (-)() is
trivial. The implication ()(q) was proved by Holland [1].

Question. Is there a normed space E such that Lc(E) is dual
cross-symmetric but not cross-symmetric?
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