104. Convergence of Transport Process to Diffusion

By Toitsu WATANABE

Department of Applied Physics, Nagoya University

(Comm. by Kinjirô KUNUGI, M. J. A., June 10, 1969)

Let us consider a transported particle in the transport medium G, which is bounded or unbounded domain of \mathbb{R}^n . Suppose that it travels in a straight line and interacts with the medium with probability $k\varDelta$ $+o(\varDelta)$ during time t and $t+\varDelta$. The scattering distribution of velocity from $c\omega$ to $c\omega'$, $\omega' \in d\omega'$ at point $x \in G$ is assumed given by $\pi_x(d\omega')$. If the particle hits the boundary of G, then it dies. Under these assumptions, the position X(t) and velocity V(t) of the particle at time t together make up a Markov process (X(t), V(t)).

The purpose of this paper is to show that when $c \rightarrow \infty$, the process X(t) converges to a diffusion under some additional assumptions (Assumptions I, II, and III).

The same result has been obtained in case of one-dimensional transport process by N. Ikeda, H. Nomoto [1] and M. Pinsky [3]; in case of two-dimensional isotropic one by A. S. Monin [2] and T. Watanabe [6]; in case of multi-dimensional isotropic one by S. Watanabe and T. Watanabe [5].

1. Let G be bounded or unbounded domain of *n*-dimensional Euclidian space \mathbb{R}^n . Suppose that the boundary ∂G of G is smooth, if it exists. Let Ω be a bounded set in \mathbb{R}^n . Let denote by S the product space of \mathbb{R}^n and Ω , and by $C_0(S)$ the Banach space of bounded continuous function on S vanishing at infinity and at boundary point (x, ω) such that $(\mathbf{n}_x, \omega) \leq 0$, where \mathbf{n}_x is an inner normal vector at $x \in \partial G$. Let T_t^c , $t \geq 0$, be the strongly continuous positive contraction semigroup on $C_0(S)$ with infinitesimal generator A^c given by:

$$A^{c}f(x,\omega) = c(\omega, \operatorname{grad} f) + k \int_{\sigma} [f(x,\upsilon) - f(x,\omega)] d\pi_{x}(\upsilon),$$

where $(\omega, \operatorname{grad} f) = \sum_{i=1}^{n} \omega_i \frac{\partial}{\partial x_i} f$, $\omega = (\omega_1, \dots, \omega_n)$, and $\pi_x (x \in \mathbb{R}^n)$ is a probability measure on Ω . We call this semigroup T_t^c , $t \ge 0$, the transport process with speed c.

Now let $C_0(G)$ be the Banach space of bounded continuous function on G vanishing near the boundary ∂G and at infinity, and $C^s_{\mathcal{K}}(G)$ be the subspace of $C_0(G)$ of function with compact support, whose thrice derivatives belong to $C_0(G)$. Let $T^p_t, t \ge 0$, be the strongly continuous positive contraction semigroup on $C_0(G)$ of diffusion determined by: Convergence of Transport Process to Diffusion

$$DF(x) = \sum_{1 \le i, j \le n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_i} F(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} F(x).$$

We shall always assume the following:

(I) $c^2/k = d^2$ (constant)

(II)
$$D(C^{\mathfrak{s}}_{\mathcal{K}}(G)) = \{U = DF : F \in C^{\mathfrak{s}}_{\mathcal{K}}(G)\}$$
 is dense in $C_{\mathfrak{0}}(G)$
(III) $s - \lim_{h \to 0} \int_{\mathcal{B}} \frac{[F(x+h\omega) - F(x)]}{h^2} d\pi_x(\omega) = \frac{1}{d^2} DF(x)$

for every $F \in C^{\mathfrak{z}}_{\mathcal{K}}(G)$.

Then we have

Theorem. For every $F \in C_0(G)$,

 $T_t^c F(x, \omega) \rightarrow T_t^D F(x)$ uniformly in (x, ω) , as $c \rightarrow \infty$.

To prove the theorem, we prepare a following lemma mentioned in [4].

Lemma. Let X and X_n , $n=1, 2, \cdots$, be Banach spaces and $P_n: X \to X_n$ be linear maps such that $||P_n|| \le 1$ and $\lim_{n \to \infty} ||P_nf|| = ||f||$ for every $f \in X$. Let T(t) and $T_n(t)$, $t \ge 0$, be strongly continuous positive contraction semigroups on X with infinitesimal generator A and on X_n with A_n , $n=1, 2, \cdots$, respectively. Suppose that there exists a dense subset M of X such that $||P_nAf - A_nP_nf|| \to 0$ for any $f \in M$ as $n \to \infty$ and $A(M) = \{g: g = Af, f \in M\}$ is dense in X. Then for every $f \in X$, $||P_nT(t)f - T_n(t)P_nf|| \to 0$ as $n \to \infty$.

Proof of Theorem. For $F \in C_0(G)$, define $(P^c F)(x, \omega) = F\left(x + \frac{d}{\sqrt{k}}\omega\right)$

 $\left(=0, \text{ if } \left(x+rac{d}{\sqrt{k}}\omega\right) \notin G\right)$. Then it follows from Assumptions I, II, and III that, for $F \in C^{3}_{\mathcal{K}}(G)$,

$$\begin{aligned} A^{c}(\boldsymbol{P}^{c}F)(x,\,\omega) &= c(\omega,\,\mathrm{grad}\,\boldsymbol{P}^{c}F) + k \int_{\varrho} \left[(\boldsymbol{P}^{c}F)(x,\,\upsilon) - (\boldsymbol{P}^{c}F)(x,\,\omega) \right] d\pi_{x}(\upsilon) \\ &= \left[c(\omega,\,\mathrm{grad}\,F) \left(x + \frac{d}{\sqrt{k}}\omega \right) - \sqrt{k} \frac{\left[F\left(x + \frac{d}{\sqrt{k}}\omega \right) - F(x) \right]}{(1/\sqrt{k})} \right] \\ &+ \int_{\varrho} \frac{\left[F\left(x + \frac{d}{\sqrt{k}}\upsilon \right) - F(x) \right]}{(1/k)} d\pi_{x}(\upsilon) \end{aligned}$$

 $\rightarrow DF(x)$ uniformly in (x, ω) as $c \rightarrow \infty$. On the other hand, by Assumption II,

$$|(\boldsymbol{P}^{\circ}\boldsymbol{D}\boldsymbol{F})(\boldsymbol{x},\,\boldsymbol{\omega})-\boldsymbol{D}\boldsymbol{F}(\boldsymbol{x})|=\left|(\boldsymbol{D}\boldsymbol{F})\left(\boldsymbol{x}+\frac{d}{\sqrt{k}}\boldsymbol{\omega}\right)-\boldsymbol{D}\boldsymbol{F}(\boldsymbol{x})\right|\rightarrow 0$$

uniformly in (x, ω) as $c \rightarrow \infty$.

Hence, for $F \in C^{\mathfrak{s}}_{\mathcal{H}}(G)$, $\|A^{c}P^{c}F - P^{c}DF\| \rightarrow 0 \text{ as } c \rightarrow \infty$.

No. 6]

^{*)} We also consider F as a function of (x, ω) by putting $F(x, \omega) = F(x)$.

T. WATANABE

Now let take $C_0(G)$, $C_0(S)$, P^c , T_t^D , T_t^c and $C_{\mathcal{K}}^{\mathfrak{z}}(G)$ for $X, X_n, P_n, T(t)$, $T_n(t)$ and M in our lemma. Then we get by the lemma

 $||T_t^c P^c F - P^c T_t^D F|| \rightarrow 0 \text{ as } c \rightarrow \infty \text{ for any } F \in C_0(G).$

Therefore $||T_t^c F - {}^c T_t^D F|| \to 0$ as $c \to \infty$ for $F \in C_0(G)$, since $||T_t^c P^c F - T_t^c F|| \to 0$ and $||P^c T_t^D F - T_t^D F|| \to 0$ as $c \to \infty$. Thus we complete the proof.

2. Example. 2.1 (cf. [6]). Let $G=R^n$ and $\Omega={}^nS^{-1}$ be the (n-1)-dimensional unit sphere in R^n and π_x be the uniform probability measure on S^{n-1} (it is independent of $x \in R^n$). The transport process for this case is called *the isotropic scattering transport process with speed c.* Put $D=\frac{1}{2}\Delta$ and $d^2=\frac{2}{n}$. Then Assumptions I, II, and III are satisfied. Thus the isotropic scattering transport process converges to the Brownian motion.

2.2.
$$G = R^1$$
, $\Omega = \{-1, 1\}$, $\pi_x(\{1\}) = \frac{1}{2} \left(1 + \frac{1}{\sqrt{k}}\right)$, $\pi_x(\{-1\}) = \frac{1}{2} \left(1 - \frac{1}{\sqrt{k}}\right)$. $D = \frac{1}{2} \Delta + \frac{\partial}{\partial x}$, $d = 1$.

2.3.
$$G=R^1$$
, $\Omega_x = \left\{-\frac{1}{a(x)}, \frac{1}{a(x)}\right\}(a(x)>0), \quad \pi_x\left(\left\{-\frac{1}{a(x)}\right\}\right)$
 $=\pi_x\left(\left\{\frac{1}{a(x)}\right\}\right) = \frac{1}{2}, \quad D = \frac{1}{2}a(x)\frac{\partial^2}{\partial x^2}, \quad d=1.$

References

- Ikeda, N., and H. Nomoto: Branching transport processes. Seminar on Prob., 25, 63-104 (1966) (in Japanese).
- [2] Monin, A. S.: A statistical interpretation of the scattering of macroscopic particles. Th. Prob. Appl., 3, 298-311 (1956) (English transl.).
- [3] Pinsky, M.: Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Z. Wahr. Geb., 9, 101-111 (1968).
- [4] Trotter, H. F.: Approximation of semigroups of operators. Pacific J. Math., 8, 887-919 (1958).
- [5] Watanabe, S., and To. Watanabe: Weak convergence of isotropic scattering transport process to Brownian motion (to appear).
- [6] Watanabe, To.: Weak convergence of the isotropic scattering transport process with one speed in the plane to Brownian motion. Proc. Japan Acad., 44, 677-680 (1968).