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1. Introduction. We consider the following fourth order partial
differential equation

(1) 0%y 0t*=(1+ a(0y | 0x)**)d%y | 0x*— Bd*y [ dx*,
where a and 8 are positive constants and p=1,2, . . ., which is deeply
connected with the study of the anharmonic lattice (see [1]).

Here we congider the initial-boundary value problem for (1) with
initial values

(2) y(0, )=f(x),  0y/dt0, x)=g(x),
and with periodic boundary condition
(3) y(it, )=y, z+1) for all x and .

Then we have the following theorem being concerned with the global
solution for the problem :

Theorem. For every a>0, 3>0, and for every real 1-periodic
wmitial functions fe W®(0,1), g W0, 1), there exists the unique
function which satisfies (1), (2) and (8) in the classical sense in the
whole (t, x) plane.

The method of proof is the semi-discrete approximation similar
to that presented by Sjoberg [2].

The authors were announced by Nisida [3] that he independently
treated the same problem by means of the theory of semi-groups.

2. Proof of existence of the global solution. In order to prove
the existence of the desired solution we employ the following semi-
discrete approximation :
d*yy(t, x,)/dt*=D [D_yy(t, z,)+ a(D_yy(t, ,)?* |2p+1]

_BDiDEyN(ts CL',,), 7/‘:1’2’ © ',N
yN(O» x,):f(oc,), dyN/dt(Oy %):g(x,), 7'=1a 2’ et ,N’
yN(ty xr)zyN(t, xr+N)’ /":1, 2’ ) N and all ¢
where the mesh-width 2=1/N, N natural number, x,=rh and the
difference operators D, and D_ are defined by

hD y(z,) =y, )—y(x,),  hD_y(x,)=y,)—y,_,).

For every h>0 the solution of the problem (4) uniquely exists on
the basis of the theory of ordinary differential equations. The solu-
tion yy(t, x,), fixed N, is a grid-function defined for x,=rh. We may
write yy(t, z,)=v,(t) for the sake of simplicity.

(4)
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We denote by (f, g) the scalar product and by | f| the norm in
the space L,(0,1), that is

(f,9=[ T@y@dz  and  |7I=(F, 7).
On the other hand, in the space of grid-functions we define
(F,0h=27@9@)h  and =7, )a

Now we are going to write down a discrete analogue of Sobolev’s
theorem.

Lemma 1. Let ¢ and 7 be integers with the property 0<r<o
and 6<N/2—1. Then to every constant ¢>0 there exists a constant
C(e) >0, independent of N-periodic grid-functions w and h, such that
(5) | DED2u, Slrsnngi‘D'fulzéelID?D"fuII% + C(e)||ull3,
where 6=0,4+0,, T=7,+7,, 05, 7,20, 1, 7,=1, 2.

Here we define
(6)  E.@®=(ldy/dt|i+ BID Ly} + al(D_»)**|3/@p+D(p+1)

+1D_yl)/2,
(7)  E®=(|dv/dt|}; + Bl D o]+ |1 D_v|}3)/2,
(8)  E@®=(|dw/dt|}+ B D w|}+ | D_w|3)/2,
where v,=dy,(t)/dt, w,=d*,(t)/dt*. Then we obtain the following:

Lemma 2. For an arbitrary finite interval 0<t<T, there exist

constants K;, i=1, 2,8, which are independent of h, such that

(9) E,(H<K,
(10) E,®H<LK,
an E.()<K,.

Proof. Differentiating (6) with respect to ¢, using the periodicity
of the function y,, and the system (4), we have
dE,(t)/dt=0
which implies E,(t)=E,(0)<K,.
In virtue of the following inequality

v <2 (¢ Idye)atds+ 1715)

and of (9), we get, for an arbitrary finite interval 0<t< T,
12) ly@IE <k,
where k, is a constant independent of .

Now the function v,.(f)=dy,(t)/dt satisfies the equation
13) dw,@®)/dt*=D.D_v,+a(D,y,)*D,D_v,+aD_v,D (D_y,)?

—BD: D% v,
which is obtained by differentiating the equation (4) with respect to ¢.
Differentiating (7), using the periodicity of the function v,(t) and the
equation (13), we have
dE,(t)/dt=a(dv/dt, (D,y)**D . D_v+D_vD (D_y)*»),.
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Since
(dv/dt, (D,yy*D,D_v),<max|D,y,[(|dv/dt|}+|D,D_v|})/2,
(dv/dt, D_vD (D_y)*),
<2p max|D_y,[r"' max|D_v,||dv/dt|,| D, D_yl,

<p mrax!D_%IZ"“IID+D_leh(IIdv/dtH%+8|ID"’-?)I|%+C(e)llD_vHi),
we obtain
AE,(8) | At < k,E (),
where k, is a constant independent of %, which implies
E,(t)<E)0) exp k,T=K,, 0<t<T.
The inequality (11) may be driven in the similar way as (10).
(q.e.d.)

Lemma 3. There exist constants m,, i=1,2 independent of h,

such that for an arbitrary finite interval 0<t<T,
DDy |, <m, | DL Dxdy/dt|, <m,.

Proof. In virtue of Lemma 2 and periodicity of v.(t), we get
by (4)
(19 BIDLD Ly <L||d*y/dt |+ |1D. D _ylln+ || D (D_y)?*|n/2p +1 < ks,
where k, is a constant independent of .

Now from the equality

D.D_dy,/dt*=D D_(D_y,+a(D_y,)***/2p+1)— BD3 D y,,
Lemma 2 and (14), we obtain the following estimate
| D%DLy | <M.
From the equation with respect to »,(t)=dy,(t)/dt we get
| D%Dw ||, = | D:D1dy | dt|l, < m,.

using Lemma 2.

Now, in this section, it remains to show that from the solution of
semi-discrete approximation (4) we may construct the desired solution
in an arbitrary finite interval 0<t<T. But our method is similar to
the procedure adopted by Sjoberg [2]. Then it suffices to show that

we can obtain the solution by the application of Ascoli-Arzela theorem
on the family of functions

Gt D)= 3 an(@, e, ay(@, )=(er, yy(t, @),
where N=2n+1m, nn=1, 2, ...

By the same argument as the above one, we can prove the exist-
ence in the lower half plane ¢<0.

3. Uniqueness.

Lemma 4. Let y(t,x) be a solution of (1) with (2) and (3).
Then for an arbitrary fized strip {—oo<wx<oo, 0Kt T}, there exist
constants Cy;,1=1,2, 3,4 depending only on T, a, B, f, g, and their deriv-
atives such that

v <Cy, [10y/0t] <C,, max |0y/dxz| <C;, |0%y/02*|<C.,.
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Proof. We define the energy
E®)=(||0y/0t|P+ |10y /0x|P+ | Oy /0x)?**|P/ @p + V(@ + 1) + Bl|0*y | 0* )
/2. Differentiating F(f) and using periodicity of y(¢), we have
dE()/dt=0
from which it follows |dy/dt| <C,, ||0*%y/02?*|<C,. Then taking into
account of the inequality

lwir<2(¢[ 19ues) /at Fds + 171F),

we obtain ||y||<C,. Then using Sobolev’s theorem we get max|dy/dx|
<C.. (gq.e.d.)
Now we assume that y(t, ) and #(¢, x) are two solutions of the
equation (1) satisfying the same initial conditions and (3). Then, the
difference z=y—4 satisfies
2ot =00+ QYPZpp+ WP+ YL Yot - F YN T VW aoRo— Bz
Introducing G(t) defined by
G(t)=(||0z/0t|*+ B||0°2/ 0a* | +- |02/ 0z |) /2,
we get, in virtue of Lemma 4,
dGt) | dt=a(2,, Y#2,0) + @y Y2+ YL Yot - - - HYDE T+ TPV 00?)
< const. G(1).
From this differential inequality and the initial conditions z(0, ) =0,
2,0, 2)=0, we can immediately conclude z=0 in an arbitrary fixed
strip{—oco << 0, 0Lt T}
This completes the proof of the theorem.
Up to now we have not succeeded in proving the global existence
for the following equation:
0y /0t =1+ a(0y/0x)*»+1)d%*y | dx*— Bo*y | 0z,

where a and 8 are positive constants and p=0,1,2, - - -.
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