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Ehime University

(Comm. by Kinjir6 KUNUGI, M. ,r. )., Oct. 13, 1969)

A strongly normal space is a countably paracompact, collection-
wise normal space (M. Kattov [2]). M. Kattov [2] and V. ediv
[5] proved independently the following"

Theorem 1. A (Kattov, Sediv). A normal space X is a strongly
normal space if and only if for every locally finite collection {F A}
of subsets of X there exists a locally finite collection {G I e A} of open
subsets of X such that FcG for each e A.

We have, however, no informations on other characterizations of
strongly normal spaces. The purpose of this paper is to obtain some
characterizations of strongly normal spaces in terms of "coverings"
(Theorem 2. A). Furthermore, we shall also obtain similar charac-
terizations of collectionwise normal spaces (Theorem 2. B).

An open covering of a topological space is called an A-covering
if it has a locally finite (not necessarily open) refinement. Every
countable open covering is an A-covering. Indeed, or a countable
open covering II {Un In= 1, 2, } the collection {Vn In--- 1, 2, } is a

locally finite refinement of 1, where V=U and V=Un-- U for
i=l

n--2, 3, ....
A collection of subsets of a topological space is called bounded

locally finite, if there is a positive integer n such that every point of
the space has a neighborhood which intersects only at most n elements
of the collection. The following theorem is due to [2, Proposition 3.1].

Theorem 1o B (Kattov). A normal space X is a collectionwise
normal space if and only if for every bounded locally finite collection

{F e A} of subsets of X there exists a locally finite collection {G e A}
of open subsets of X such that FaG Ga for each e A.

An open covering of a topological space is called a B-covering if
it has a bounded locally finite refinement. Of course, every B-covering
is an A-covering and every finite open covering is a B-covering.

Theorem 2. A. For a topological space X the following conditions
are equivalent"

(a) X is a strongly normal space.
(b) X is a normal spacd and for every locally finite covering

1) In our terminology a normal space need not be a Hausdorff space.
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{F 1 e A} of X there exists a locally finite open covering (G e A} of
X such that FcG for each e A.

(c) X is a normal space and every A-covering of X has a locally
finite open refinement.

(d) For every A-covering 1% of X there exists a locally finite cozero
covemng of X such that { VI V e } refines 1%.

(e) Every A-covering of X has a locally finite closed refinement.
() Every A-covering of X has a closure-pleserving closed

refinement.
(g) Every A-covering of X has a locally finite partition of unity

subordinated to it.

(h) Every A-covering of X has a partition of unity subordinated
to it.

( ) Eery A-coering o[ X is a norma covering (in the sense o
J. W. Tukey [6]).

(j) Eery A-covering o[ X has an open star-refinement.
(k) Every A-covering o X has a cushioned refinement (in the

sense o E. Michael [3]).
(1) Every A-covering o[ X has an open a-cushioned refinement.
Theorem 2. Bo For a topological space X the following conditions

are equivalent"

(a) X is a collectionwise normal space.
(b) X is a normal space and for every bounded locally finite

covering {FI e A} of X there exists a locally finite open covering

{G ] e A} of X such thatFG for each e A.
(c)--(1) of Theorem 2.A in which A-coverings are replaced by

B-coverings.

Remark. If we replace "A-covering" in (d)--(1) o Theorem 2.A
by "open covering" (resp. "countable open covering" or "finite open
covering"), each of these conditions is equivalent to saying that X is
a paracompact normal (resp. countably paracompact normal or normal)
space.

We prove only Theorem 2.A. For the proo we shall need Theorem
1.A. The proo o Theorem 2.B is quite analogous to the proof of
Theorem 2.A; we have only to use Theorem 1.B instead of Theorem

Proof of Theorem 2. A. The style of the proof is

2) A subset G of a topological space X is called a cozero-set of X if there
exists a real-valued non-negative continuous function f on X such that
G={x]f(x)>O}. A cozero covering is a covering all of whose elements are
cozero-set.
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(e)-*(f)

(a)-(b)-(c)-(d)--(g)-*(h)-.(i)-(j)--(k)-(a).

(a)(b). This is obvious from Theorem 1.A.
(b)--,(e). Let 11 be an A-covering ot X. Then 11 has a locally

finite refinement {F 12 A}. Each F is contained in some element of
1; let it be U. By assumption there exists a locally finite open
covering {G I A} of X such thatF G for each e A. Put V U [ G
for each e A. It is obvious that {VI e A} is a locally finite open
refinement of 1I.

(c)-(d). As is well known, for every locally finite open covering

{U I e A} of a normal space there exists an open covering {V I e A}
of the space such that I7 U for each A. Moreover, each V may
be a cozero-set.

(d)-(e), (e)-(f) and (f)-(k). These are obvious.
(d)(g). Let 1I be an A-covering of X, and let -{VI A} be a

locally finite cozero covering of X such that { 171 e A} refines Lt. Then
we have, for each e A, a real-valued non-negative continuous function
f, on X such that V={xlf(x)>O}. Put f(x)-- f(x) for x e X, then

f is a positive continuous function on X because is a locally finite
open covering of X. If we define g(x)---f(x)/f(x) for x e X, then
{gl e A} is a locally finite partition of unity subordinated to 1I.

(g)-(h). This is obvious.
This is an immediate consequence of K. Morita [4,(h)-(i).

Theorem 1.2].
(i)-(j).
(j)(k).

This is obvious.
An open star-refinement of a covering is a cushioned

refinement of the covering.
(d)-.(1). This is obvious.
(1)-.(k). As is shown in the proof of [3, Theorem 1.2], a covering

with an open a-cushioned refinement has a cushioned refinement.
(k)-(a). First we shall prove that X is collectionwise normal.

Let {F I e A} be a discrete collection of closed subsets of X; we must
find a mutually disjoint collection {G 12 e A} of open subsets of X. Put
U-X-(._) F, for each e A, then U is open and U F for each e A.

Obviously, the collection {F 12 e A} 3 (X-- F} is a (bounded) locally

finite covering of X which refines II-{UI2eA}. Thus 1I is an
A-covering (more precisely, a B-covering) of X and hence, by
assumption, 1I has a cushioned refinement. By [3, Proposition 2.1],
we can take a covering {V]2 e A} such that for every subset M of
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A V U. Put G=X- V, for each 2 e A, then each G is open.

Obviously, the collection {G I z A} is mutually disjoint. For each e A,
G-X-U VX-U U- (X-U)- FF.

Therefore X is collectionwise normal.
Next, we shall prove that X is countably paracompact. Let

H-{U In-1, 2, } be a countable open covering of X. Since every
countable open covering is an A-covering, H is an A-covering of X and
hence has a cushioned refinement {V n= 1, 2, such that V U
for n-l, 2, Thus X is countably paracompact by C. H. Dowker
[1, Theorem 2].
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