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The aim of this note is to announce some theorems (Theorems 1-8)
concerning distributions as the boundary values of functions which are
analytic in a subset of C.

The n dimensional notation used here will be that of Schwartz [1].
CRn is a cone with vertex at zero if y e C implies 2y e C for all
positive scalars 2. The intersection of C with the unit sphere yl=l
is called the projection of C and is denoted pr C. Let C’ be a cone
such that pr C’pr C; then C’ will be called a compact subcone of C.
The function

uc(t)-- sup (-(t, y})
y prG

is the indicatrix of the cone C. 0(C) will denote the convex envelope of
C. Tc-R/iC, where C is an open connected cone, is a tubular radial
domain. The Fourier transform of f(t)e L will be denoted by f or

[f(t);x] and is defined as

f(x) f(t)e",tdt.

We refer to Schwartz [1] and Gel’land and Shilov [2] for definitions
and facts concerning the distribution spaces.

1. Distribution boundary values in Z’. Lauwerier [3] has shown
that functions which are analytic in Im (z)0, z e C, and which are
bounded by a polynomial have distributional boundary values in the Z’
topology. We extend the results of Lauwerier to functions which are
analytic in tubular radial domains, Tc.

Theorem 1. Let f(z) be analytic in Tc. For any arbitrary
compact subcone C’ of C let f(z) satisfy
( 1 ) If(z) <_K(C’)(1 + Izl)Ne2(+), z e Tc’,
for all a>0, where A is a nonnegative real number, N is any real
number, and K(C’) is a constant depending on C’. Then f(z) has a
distributional boundary value U e Z’ which is the Fourier transform
of an element V e ’ which vanishes for uc(t)>A.

Let P be a constant such that N-2P

_
n-- e for all e > 0 and let

B e Rx, B0, be such that
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Q(I+ Izl)_]B+(z,z}l_(l+ Izl)2, zeR+iC’’,
where C" is an arbitrary compact subset of C and Q and M are
constants. It follows that

( 2 ) g(t) f(z)(B + (z, z)-e-2<,dx
JR

is independent of y e C and vanishes if uc(t)A. It is immediate from
(2) that e-2<,Og(O e L and f(z)(B+(z, z))-e--[e-2<,Og(O x] in the
L sense. Letting e Z and e such that -(B+ (z, z))e we have

(f(z), )=(e-<V,Og(t), ), z e Tc.
Then as yO, y e C’C we see that

where U e Z’ is the Fourier transform of V- (B-- )rg(t) e .’,
A-- 1

4z = 3.
This proves Theorem 1. Note that g(t) is continuous

and bounded as O(e<,t>) or all y e C.
We define by (, )-(U, (-0) and denote a neighborhood

of the origin with radius R by N(0, R). As a converse result to
Theorem I we obtain
Theorem 2. Le U-Dg(O, where g(O is continuous and bounded

as O(e,) for all B O(C). Le$ U vanish if uc(t))O. Then there
exists a function f(z) which is analytic in T(c, and for any compact
subcone C’ of C we have
( ) [f(z)[ +  zl) ze T
where R is fixed. Furthermore f(z)() e Z’ in the topology of Z’
as yO, y C.

The desired unetion is f(z)-(U, e<,>), whieh can be shown to
be analytic in T(c. The boundedness condition follows by a straight-
forward calculation. Let e Z and =, e. We obtain

((V, g)-(V,
As y0 in C’c C, it follows that

where V ().
The results of this seetion suggest a solution to the Hilbert problem

or Z’. Let U e Z’ be such that -U- ’, V-Dg(O, where g(0
is continuous and bounded as O(e<,(t,’’’,t>) for all B, B being an
n-tuple of positive real numbers. Denote G- {z" Im (z))0,
=(,...,), -1,]-1,...,n}. Denote -{"t0, ]=1,...,n};
and let

gv (0--  g(0, e
t0 te G and te boundary of G.

Put V-Dgv(). Then (Vv, e<,t>)(v) in Z as Im (z)0,
z e G. We obtain U- (Vv) where there are 2 elements in
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this sum.
2. Distributional boundary values in q’. We obtain a boundary

value theorem for ’ under the assumption of the boundedness
condition (1). Such theorems have relevance in quantum field theory
(see [4]).

Theorem 3. Let f(z) be analytic in T and satisfy (1). Let f(z)
-U in the topology of ’ as yO, y e C’, C’ being an arbitrary compact
subcone of C. Then U e 3’; there exists an element V e ’ which.
vanishes if uc(t)A and f(z)-(V, e<,t>}, z e Tc, as elements of 3’.

The act that U e 3’ ollows immediately rom the completeness of
the 3’ topology. The element V is (B--)eg(t) which is shown to be
in 3’ using Theorem 1. The equality f(z)-(V, e2i(z’t)}, Z e T, in 3’
follows using the relation f(z)(B + (z, z})-e= [e-2<,t>g(t) x] in the L
sense which was obtained in the proof of Theorem 1. We note this
result has been obtained by DeJager [5] and Beltrami and Wohlers
([6], [7]) if C is Im (z) 0, z e C and by L. Grding ([4], p. 61) if C is
the forward or backward light cone. We note that Vladimirov [8, p.
235] has characterized functions which are analytic in tubular cones
and which have distributional boundary values in 3’ using a
boundedness condition which is more restrictive than (1).

Let f(z) be bounded in 3’ as a function of x for any y e C. Since

’ is a Montel space then f(z) converges to some U e ’ as y-0, y e C’,
C’ being any arbitrary compact subcone of C. Using Theorem 3 we
have proved

Theorem 4. Let f(z) be analytic in Tc and satisfy (1). Let f(z)
be bounded in ’ as a function of x for any y e C. Then there exists
an element U e ’ such that f(z)U in ’ as y-O, y e C’; and the
conclusions of Theorem 3 hold.
This result extends a theorem of Swartz [9].

A theorem for functions analytic in an octant G w.hich gives other
conditions for the convergence in ’ of Theorem 3 to be proved is

Theorem . Let f(z) be analytic in G(,..., and let it be continuous
on Im (z)-O, ]-1, ..., n. Let f(z) satisfy.
( 4 ) If(z)l _Q(I+ Izl)e2,(’I,’’’,’1, Im (z)_0, ]=1, ..., n,
for some constants Q and N and for any n-tuple A of real numbers.
Then there exists an element U e ’ such that supp (U)S-{t; --A
<_t c, ]-1, ..., n} f(z)-(U, e2<z,t>}, z e G(1,...,1) and f(z) in 3’
as Im (z)0.

A similar result holds for each octant G.
As a converse result we obtain

Theorem 6. Let U e ’ and let U vanish if Uc(t)A_O. Then
there exists a function f(z) which is analytic in T(C) f(z) satisfies (3);
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f(z) in ’ as y-*0, y e C’c C and f(z) is bounded in ’ as a function
of x for any y e C.

The function is f(z)=(U, a(t)e(z,t>} where a(t)e , a(t)=l on
supp(U)={t" uc(t)AO}, and a(t) vanishes in a neighborhood of
supp (U). The fact that f(z) in 3’ follows using essentially the
same argument as in Theorem 2 except that e and = e and
the topology here is that of 3’. To show that f(z) is bounded in
we show that f(z) is bounded on bounded sets of . Let eB, a
bounded set of . Then
( 5 ) (f(z), )=(U,
It follows that (t)e-(u,t) is bounded in or y e C. Since U e ’,
we have by (5) that sup (f(z), )[ is finite for z e Tc. We note that

Schwartz ([1], p. 235) has characterized bounded sets in .
3. Distributional boundary values in
Consider as a subset of ’ with the topology of ’. We gener-

alize some results of Beltrami and Wohlers ([6], [7]) for functions
analytic in an octant G. For convenience we shall state the results
for z e G(,...,) and note that similar theorems hold for each of the
octants. Recall the definition of the set S(0,...,0) from Theorem 5.

Theorem 7. Let U be a distribution such that supp (U)S(o,...,o)
and ev for some P, lgpg2. Then U= t"g,(t), where g, is

continuous and bounded if P 1 or g e Lq, 1 /p + 1/q 1, 1 (p 2

f(z)=(V, e(,t>)= 1 /, 1 z e G((2ui) = t-z/’ ’"")’

as elements of ’; and f(z) e in the topology of ’ as Im (z)0.
Using Theorems 3 and 7 we obtain necessary and sufficient

conditions that U e be the boundary value of a function f(z) which
is analytic in G(,...,) and is bounded as in (4) or z e G(,...,) and
A-(0, ..., 0). We denote such functions by the symbol H+.

Theorem 8. Ue, lP2, is the ’ boundary value of a

function f(z) e H+ if and only if
/U, =0, zeG,,(1, 1)

: t-z /
The proofs of these results are similar in construction to those used
for the one dimensional case. For U ee, lgPg2, one can also
define a generalized Poisson integral which is an n harmonic function
of z and which converges in ’ to the sum of two elements of Z’. For
some further results concerning distributional boundary values in
as a subspace of ’ we refer to Carmichael [10].
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