188. On Certain Mixed Problem for Hyperbolic Equations of Higher Order. III

By Taira Shirota and Rentarô Agemi
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugı, m. J. A., Dec. 12, 1969)

1. Introduction. Let R_{+}^{n} be the open half space $\{(x, y) ; x>0$, $\left.y \in \boldsymbol{R}^{n-1}\right\}$. We consider the mixed problem ($P, B_{j} ; j=1, \cdots, l$), briefly (P, B_{j}), for hyperbolic equations of order m in $(0, T) \times \boldsymbol{R}_{+}^{n}(0<T<\infty)$:

$$
\begin{array}{ll}
\left(P\left(D_{t}, D_{x}, D_{y}\right) u\right)(t, x, y)=f(t, x, y) & \text { in }(0, T) \times \boldsymbol{R}_{+}^{n}, \\
\left(B_{j}\left(D_{t}, D_{x}, D_{y}\right) u\right)(t, 0, y)=0(j=1, \cdots, l) & \text { in }(0, T) \times \boldsymbol{R}^{n-1}, \\
\left(D_{t}^{k} u\right)(0, x, y)=0(k=0,1, \cdots, m-1) & \text { in } \boldsymbol{R}_{+}^{n},
\end{array}
$$

where $D_{t}=\frac{\partial}{\partial t}, D_{x}=-i \frac{\partial}{\partial x}, D_{y}=\left(-i \frac{\partial}{\partial y_{1}}, \cdots,-i \frac{\partial}{\partial y_{n-1}}\right)$ and $i=\sqrt{-1}$.
The purpose of this paper is to determine the necessary and sufficient conditions for L^{2}-well-posedness in the following sense.

Definition. The mixed problem $\left(P, B_{j}\right)$ is L^{2}-well-posed if and only if there exist constants T and T^{\prime} with $0<T^{\prime} \leq T$ which satisfy the following condition:

For every $f \in H^{1}\left((-\infty, T) \times \boldsymbol{R}_{+}^{n}\right)$ with $f=0(t<0)$ the mixed problem (P, B_{j}) has a unique solution $u \in H^{m}\left(\left(0, T^{\prime}\right) \times \boldsymbol{R}_{+}^{n}\right)$ so that

$$
\sum_{k=0}^{m-1} \int_{0}^{T^{\prime}}\left\|\left(D_{t}^{k} u\right)(t, \cdot, \cdot)\right\|_{m-k-1}^{2} d t \leq C \int_{0}^{T}\|f(t, \cdot, \cdot)\|_{0}^{2} d t
$$

where a constant C depends only on T.
In § 2 we give certain necessary and sufficient conditions for L^{2} -well-posedness (Theorem 1) and investigate zeros of the Lopatinskii's determinant under L^{2}-well-posedness (Theorem 2).

In T. Shirota and K. Asano [5] it has been shown by semi-group method that the mixed problem $\left(P, D_{x}^{2 j-1} ; j=1, \cdots, l\right)(m=2 l)$ is well posed in the L^{2}-sense ${ }^{1)}$ if $P(D)=P\left(D_{t}, D_{x}, D_{y}\right)$ does not contain the terms of odd order relative to D_{x}. As one of the applications of Theorems 1 and 2 we show that, in the case of constant coefficients, the above condition for $P(D)$ is necessary to be well posed in the L^{2}-sense for the above mixed problem. This assertion is found in Theorem 4 in § 3.

The details and other results will be published elsewhere.
The authors wish to thank Mr. Kôji Kubota and Mr. Toshio Ôkubo for their participations in discussion.

[^0]2. Necessary and sufficient conditions for L^{2}-well-poseness. Let $P(D)$ and $B_{j}(D)(j=1, \cdots, l)$ be homogenuous differential operators of order m and $m_{j}\left(m_{j}<m\right)$ with constant coefficients respectively. We assume that $P(D)$ is strongly hyperbolic relative to t-direction and the hyperplane $x=0$ is non-characteristic for $P(D)$. Then it is easily seen that the number $l(m-l)$ of the roots $\lambda_{j}^{+}(\tau, \sigma)(j=1, \cdots, l)\left(\lambda_{k}^{-}(\tau, \sigma)\right.$ $(k=1, \cdots, m-l)$) in λ of the characteristic equation $P(\tau, \lambda, \sigma)=0$ located in the upper (lower) half λ-plane is constant for any (τ, σ) with $\operatorname{Re} \tau>0$ and $\sigma \in \boldsymbol{R}^{n-1}$ respectively.

Throughout this paper we use the following Fourier-Laplace transforms and norms.

$$
\begin{aligned}
& \hat{u}(\tau, \lambda, \sigma)=\int_{0}^{\infty} d t \int_{0}^{\infty} d x \int_{R^{n-1}} e^{-\tau t-i \lambda x-i \sigma y} u(t, x, y) d y \\
& \hat{u}(\tau, x, \sigma)=\int_{0}^{\infty} d t \int_{R^{n-1}} e^{-\tau t-i \sigma y} u(t, x, y) d y \\
& \|u(t, \cdot, \cdot)\|_{k}^{2}=\sum_{j=0}^{k}\left\|\left(D_{t}^{j} u\right)(t, \cdot, \cdot)\right\|_{k-j}^{2} \\
& \|\hat{u}(\tau, \cdot, \cdot)\|_{k}^{2}=\sum_{j=0}^{k} \int_{R^{n-1}}\left(|\tau|^{2}+|\sigma|^{2}\right)^{k-j} d \sigma \int_{0}^{\infty}\left|\left(D_{x}^{j} \hat{u}\right)(\tau, x, \sigma)\right|^{2} d x(\operatorname{Re} \tau \geq \gamma>0),
\end{aligned}
$$

where $\sigma y=\sigma_{1} y_{1}+\cdots+\sigma_{n-1} y_{n-1},|\sigma|^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}, \gamma$ is arbitrarily fixed and $\left\|\|_{h}\right.$ is the norm in Sobolev space $H^{h}\left(\boldsymbol{R}_{+}^{n}\right)(h=0,1, \cdots)$.

We define the Lopatinskii's determinant $R(\tau, \sigma)$ as follows:

$$
\begin{aligned}
& B(\tau, \sigma)=\operatorname{det}\left(B_{1}\left(\tau, \lambda_{k}^{+}(\tau, \sigma), \sigma\right), \cdots, B_{l}\left(\tau, \lambda_{k}^{+}(\tau, \sigma), \sigma\right) ; k \downarrow 1, \cdots, l\right), \\
& R(\tau, \sigma)=B(\tau, \sigma) / \prod_{1 \leq j<k \leq l}\left(\lambda_{k}^{+}(\tau, \sigma)-\lambda_{j}^{+}(\tau, \sigma)\right) .
\end{aligned}
$$

Note that $R(\tau, \sigma)$ is analytic in $\operatorname{Re} \tau>0$ and real analytic in \boldsymbol{R}^{n-1}. Let V be the $\operatorname{set}\left\{(\tau, \sigma) ; R(\tau, \sigma)=0, \operatorname{Re} \tau>0, \sigma \in R^{n-1}\right\}$ and $S(\tau)$ the analytic variety $V \cap\left\{(\tau, \sigma) ; \sigma \in \boldsymbol{R}^{n-1}\right\}$. Then we have $\alpha V=V$ and $\alpha S(\tau)=S(\alpha \tau)$ for every $\alpha>0$.

Applying now the Fourier-Laplace transform to the equations in the problem $\left(P, B_{j}\right)$ we obtain the boundary value problem (\hat{P}, \hat{B}_{j}) of the ordinary differential equations depending parameters (τ, σ) with $\operatorname{Re} \tau>0$ and $\sigma \in \boldsymbol{R}^{n-1}$:

$$
\begin{aligned}
& \left(P\left(\tau, D_{x}, \sigma\right) \hat{u}\right)(\tau, x, \sigma)=\hat{f}(\tau, x, \sigma) \quad \text { in } \boldsymbol{R}_{+}^{1}, \\
& \left(B_{j}\left(\tau, D_{x}, \sigma\right) \hat{u}\right)(\tau, 0, \sigma)=0 \quad(j=1, \cdots, l) .
\end{aligned}
$$

Let $R_{j}(\tau, x, \sigma)$ be the determinant replacing the j-column in $R(\tau, \sigma)$ by the transposed vector of ($e^{i x \lambda_{1}^{+}(\tau, \sigma)}, \cdots, e^{i x \lambda_{i}^{+}(\tau, \sigma)}$) and $\Gamma=\Gamma(\tau, \sigma)$ a closed Jordan curve in the lower half λ-plane enclosing all the roots $\lambda_{k}^{-}(\tau, \sigma)$ ($k=1, \cdots, m-l$). If $R(\tau, \sigma)$ is not zero for some (τ, σ) with $\operatorname{Re} \tau>0$ and $\sigma \in \boldsymbol{R}^{n-1}$, then it is well known that for every $\hat{f}(\tau, \cdot, \sigma) \in C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{1}\right)$ the boundary value problem $\left(\hat{P}, \hat{B}_{j}\right)$ has a unique solution $\hat{u}(\tau, \cdot, \sigma) \in C^{\infty}\left(\overline{\boldsymbol{R}}_{+}^{1}\right)$, which is written in the form:
$\hat{u}(\tau, x, \sigma)=\frac{1}{2 \pi} \int_{0}^{\infty} G_{1}(x, s, \tau, \sigma) \hat{f}(\tau, s, \sigma) d s+\frac{1}{2 \pi} \int_{0}^{\infty} G_{2}(x, s, \tau, \sigma) \hat{f}(\tau, s, \sigma) d s$,
where $G_{1}(x, s, \sigma)=\int_{\Gamma} \frac{e^{i(x-s) \lambda}}{P(\tau, \lambda, \sigma)} d \lambda$,

$$
G_{2}(x, s, \tau, \sigma)=-\sum_{j=1}^{i} \frac{R_{j}(\tau, x, \sigma)}{R(\tau, \sigma)} \int_{\Gamma} \frac{B_{j}(\tau, \lambda, \sigma)}{P(\tau, \lambda, \sigma)} e^{-i s \lambda} d \lambda .
$$

Let Σ_{+}be the set $\left\{\left(\tau^{\prime}, \sigma^{\prime}\right) ;\left|\tau^{\prime}\right|^{2}+\left|\sigma^{\prime}\right|^{2}=1, \operatorname{Re} \tau^{\prime}>0, \sigma^{\prime} \in R^{n-1}\right\}$ and $\bar{\Sigma}_{+}$ its closure. Set $V^{\prime}=V \cap \Sigma_{+}$. When A is a subset of Σ_{+}we denote the complement of A in Σ_{+}by A^{c}. Then we have the following

Theorem 1. If $S(\tau)$ is not the whole space R^{n-1} for every τ with $\operatorname{Re} \tau>0$, then the mixed problem $\left(P, B_{j}\right)$ is L^{2}-well-posed if and only if the following condition (I) is satisfied:

For every $\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \in\left(\bar{\Sigma}_{+}-\Sigma_{+}\right) \cup V^{\prime}$ there exist a neighbourhood $U\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)$ and a constant $C\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)$ such that for any $\left(\tau^{\prime}, \sigma^{\prime}\right)$ $\in U\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \cap \Sigma_{+} \cap V^{\prime c}$

$$
\left\|\left(D_{x}^{k} G_{2}\right)(x, s, \tau, \sigma)\right\|_{\mathcal{L}_{\left(L^{2}(s>0), L^{2}(x>0)\right)} \leq} \frac{C\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)}{\operatorname{Re} \tau^{\prime}}
$$

$$
(k=0,1, \cdots, m-1)
$$

where $\left\|\|_{\mathcal{L}_{\left(L^{2}(s>0), L^{2}(x>0)\right)}}\right.$ is the operator norm from $L^{2}(s>0)$ to $L^{2}(x>0)$.
To prove Theorem 1 we need the following lemmas. Hereafter we denote various positive constants by C.

Lemma 1. If a polynomial $P(\tau, \xi)$ of degree m is strongly hyperbolic relative to τ, then we have for any (τ, ξ) with $\operatorname{Re} \tau>0$ and $\xi \in \boldsymbol{R}^{n}$

$$
|P(\tau, \xi)|^{2} \geq C(\operatorname{Re} \tau)^{2}\left(|\tau|^{2}+|\xi|^{2}\right)^{m-1}
$$

Lemma 2. If the assumption in Theorem 1 and the condition (I) are satisfied, then for every $(\tau, \sigma) \notin V$ and $f \in H^{k+1}\left((-\infty, \infty) \times \boldsymbol{R}_{+}^{n}\right)$ $(k=0,1, \cdots)$ with $f=0(t<0)$ the boundary value problem $\left(\hat{P}, \hat{B}_{j}\right)$ has a unique solution $\hat{u}(\tau, \cdot, \sigma) \in H^{m+k}\left(\boldsymbol{R}_{+}^{1}\right)$ so that
$(\operatorname{Re} \tau)^{2}\|\hat{u}(\tau, \cdot, \cdot)\|_{m-1+k}^{2} \leq C\|\hat{f}(\tau, \cdot, \cdot)\|_{k}^{2}$ for any τ with $\operatorname{Re} \tau \geq \gamma>0$, where γ is arbitrarily fixed and a constant C depends only on γ.

Lemma 3. If the assumption in Theorem 1 and the condition (I) are satisfied, then for every $a>0$ and $f \in H^{k+1}\left((-\infty, \infty) \times \boldsymbol{R}_{+}^{n}\right)$ $(k=0,1, \cdots)$ with $f=0(t<0)$ the mixed problem $\left(P, B_{j}\right)(t a k i n g T=\infty)$ has a unique solution u which satisfies $e^{-a t} u \in H^{m+k}\left((0, \infty) \times \boldsymbol{R}_{+}^{n}\right)$ and the following estimate

$$
\left.\int_{0}^{\infty} e^{-2 a t}| | u(t, \cdot, \cdot)\| \|_{m-1+k}^{2} d t \leq \frac{C}{a^{2}} \int_{0}^{\infty} e^{-2 a t}| | \right\rvert\, f(t, \cdot, \cdot)\| \|_{k}^{2} d t,
$$

where a constant C does not depend on u, f and a.
The following lemma is used in proof of necessity of Theorem 1.
Lemma 4. Let f be a function in $L^{2}\left((-\infty, \infty) \times \boldsymbol{R}_{+}^{n}\right)$ whose support is contained in $(0, T) \times \boldsymbol{R}_{+}^{n}$ and u a function satisfying $e^{-a t} u$ $\in H^{m}\left((0, \infty) \times \boldsymbol{R}_{+}^{n}\right)$ for some $a>0$ and $\left(D_{t}^{k} u\right)(0, x, y)=0(k=0,1, \cdots, m-1)$ in \boldsymbol{R}_{+}^{n}. If

$$
\int_{0}^{\infty} e^{-2 a t}\| \| u(t, \cdot, \cdot)\left\|_{m-1}^{2} d t \leq C \int_{0}^{\infty} \mid\right\| f(t, \cdot, \cdot) \|_{0}^{2} d t
$$

then we have
$\|\hat{u}(\tau, \cdot, \cdot)\|\left\|_{m-1}^{2} \leq C_{0} C \int_{-\infty}^{\infty}\right\| \hat{f}(a+i \eta, \cdot, \cdot) \|_{0}^{2} d \eta \quad$ for any τ with $\operatorname{Re} \tau=a$, where the constant C_{0} depends on a and the support of f.

Next we state the following theorem which shows that $S(\tau)$ must be the cone surface with its vertex at the origin in \boldsymbol{R}^{n-1}.

Theorem 2. Suppose that the hyperplane $x=0$ is non-characteristic for $B_{j}(D)(j=1, \cdots, l)$ and $m_{1}<\cdots<m_{l}$. If the mixed problem $\left(P, B_{j}\right)$ is L^{2}-well-posed, then the varieties $S(\tau)$ don't depend on τ with $\operatorname{Re} \tau>0$.

By Theorem 2 and the theory of characters of unitary group [6] we obtain

Corollary. Under the same assumptions in Theorem 2, if $B_{j}(D)$ does not contain the terms relative to D_{t} and the mixed problem $\left(P, B_{j}\right)$ is L^{2}-well-posed, the $S(\tau)$ is empty for any τ with $\operatorname{Re} \tau>0$.
3. Applications. First we describe necessary and sufficient conditions for L^{2}-well-posedness by the terms of reflection coefficients. To define reflection coefficients, for every $\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \in \bar{\Sigma}_{+}-\bar{\Sigma}_{+}$we rearrange the roots $\lambda_{j}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)(j=1, \cdots, l)$ in a sufficiently small neighbour$\operatorname{hood} U\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \cap \bar{\Sigma}_{+}$such that $\lambda_{j_{1}}^{+}\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)=\cdots=\lambda_{j_{2}-1}^{+}\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)\left(j_{1}=1\right), \cdots$, $\lambda_{j_{q}}^{+}\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)=\cdots=\lambda_{j_{+1}-1}^{+}\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)\left(j_{q+1}-1=l\right)$. Then we define reflection coefficients $C_{k, j}\left(\tau^{\prime}, \lambda, \sigma^{\prime}\right)\left(k=1, \cdots, q ; j=j_{k}, \cdots, j_{k+1}-1\right)$ by the equality

$$
\sum_{j=1}^{l} \frac{R_{j}\left(\tau^{\prime}, x, \sigma^{\prime}\right)}{R\left(\tau^{\prime}, \sigma^{\prime}\right)} B_{j}\left(\tau^{\prime}, \lambda, \sigma^{\prime}\right)=\sum_{k=1}^{q} \sum_{j=j_{k}}^{j_{k+1}^{+1-1}} C_{k, j}\left(\tau^{\prime}, \lambda, \sigma^{\prime}\right) \gamma_{k, j}\left(\tau^{\prime}, x, \sigma^{\prime}\right),
$$

where $\gamma_{k, j_{k}}\left(\tau^{\prime}, x, \sigma^{\prime}\right)=e^{i x x j_{k}\left(\tau^{\prime}, \sigma^{\prime}\right)}$,

$$
\begin{aligned}
\gamma_{k, j}\left(\tau^{\prime}, x, \sigma^{\prime}\right)= & x^{j-j_{k}} \int_{0}^{1} d \theta_{1} \cdots \int_{0}^{1} \theta_{1}^{j-j_{k}-1} \cdots \theta_{j-j_{k}}^{-}{ }^{-} e^{i x g} j^{\left(\tau^{\prime}, \sigma^{\prime} ; \theta\right)} d \theta_{j-j_{k}}, \\
g_{j}\left(\tau^{\prime}, \sigma^{\prime} ; \theta\right)= & \lambda_{j_{k}^{+}}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)+\left(\lambda_{j_{k}+1}^{+1}\left(\tau^{\prime}, \sigma^{\prime}\right)-\lambda_{j_{k}^{\prime}}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)\right) \theta_{1}+\cdots \\
& +\left(\lambda_{j}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)-\lambda_{j-1}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)\right) \theta_{1} \cdots \theta_{j-j_{k}}\left(j_{k}<j<j_{k+1}\right) .
\end{aligned}
$$

The following condition is introduced by S . Agmon [1].
Condition (\#). The multiplicity of a real root $\lambda(\tau, \sigma)$ in λ of the characteristic equation $P(\tau, \lambda, \sigma)=0$ is at most double for every (τ, σ) with $\operatorname{Re} \tau=0$ and $\sigma \in \boldsymbol{R}^{n-1}$.

Then we have the following
Theorem 3. Suppose the condition (\#). If $S(\tau)$ is not the whole space \boldsymbol{R}^{n-1} for every τ with $\operatorname{Re} \tau>0$, then the mixed problem $\left(P, B_{j}\right)$ is L^{2}-well-posed if and only if the following condition (II) is satisfied:

For every $\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \in\left(\bar{\Sigma}_{+}-\Sigma_{+}\right) \cup V^{\prime}$ there exist a neighbourhood
(II) $U\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)$ and a constant $C\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right)$ such that for any $\left(\tau^{\prime}, \sigma^{\prime}\right)$ $\in U\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \cap \Sigma_{+} \cap V^{\prime c}$

$$
\begin{gathered}
\left\|\int_{\Gamma} \frac{C_{k, j}\left(\tau^{\prime}, \lambda, \sigma^{\prime}\right)}{P\left(\tau^{\prime}, \lambda, \sigma^{\prime}\right)} e^{-i s \lambda} d \lambda\right\|_{L^{2}(s>0)} \leq C\left(\tau_{0}^{\prime}, \sigma_{0}^{\prime}\right) \frac{\left|\operatorname{Im} \lambda_{j}^{+}\left(\tau^{\prime}, \sigma^{\prime}\right)\right|^{\frac{1}{2}}}{\operatorname{Re} \tau^{\prime}}, \\
\left(k=1, \cdots, q ; j=j_{k}, \cdots, j_{k+1}-1\right)
\end{gathered}
$$

From Theorem 3 we obtain the following
Theorem 4. Let $P(D)$ and $Q(D)$ be homogenuuous differential operators, which don't contain the terms of odd order relative to D_{x}, of order $2 l$ and $2 l-1$ with constant coefficients respectively. If $P(D)$ satisfies the condition (\#), then the mixed problem $\left(P(D)+\varepsilon D_{x} Q(D)\right.$, $D_{x}^{2 j-1} ; j=1, \cdots, l$) is not well posed in the L^{2}-sense for a sufficiently small ε with certain fixed sign.

References

[1] S. Agmon: Problèmes mixtes pour les équations hyperboliques d'ordre supérieur. Colloques Internationaux du C. N. R. S., 13-18 (1962).
[2] G. F. D. Duff: Mixed problems for hyperbolic equations of general order. Canad. J. Math., 9, 195-221 (1959).
[3] M. Ikawa: On the mixed problem for the wave equation with an oblique derivative boundary condition. Proc. Japan Acad., 44 (10), 1033-1037 (1968).
[4] T. Sadamatsu: On mixed problems for hyperbolic systems of first order with constant coefficients (to appear).
[5] T. Shirota and K. Asano: On mixed problems for regularly hyperbolic systems (to appear).
[6] H. Weyl: The classical groups. Princeton Math. Series, No. 1.

[^0]: 1) This term means that in our definition one changes the inequality into the energy inequality.
