184. On the Topological Entropy of a Dynamical System

By Shunji Ito

(Comm. by Kunihiko Kodaira, M. J. A., Dec. 12, 1969)

§ 1. Preliminaries. Let φ be a homeomorphism from a compact space X onto itself. If α is any open cover of X, we let $N(\alpha)$ be the number of members in a subcover of α of minimal cardinality. As in [1], the limit exists in the following definition:

$$h(\alpha,\varphi) = \lim_{n\to\infty} \frac{1}{n} \log N(\vee_{i=0}^{n-1} \varphi^i \alpha)^{*})$$

and the topological entropy $h(\varphi)$ of φ is defined as $h(\varphi) = \sup h(\alpha, \varphi)$, where the supremum is taken over all open covers of X.

Let $\{\varphi_t\}$ be a homeomorphic flow on a compact space X. It was conjectured in [1] that

(F)
$$h(\varphi_t) = |t| h(\varphi_t)$$
 for all $t.**$

In this paper, we will give a proof for (F) under the assumption that X is a compact metric space and that $\{\varphi_t\}$ is a dynamical system: namely,

(C) $\varphi_t x = \varphi(t, x)$ is continuous in the pair of variables t, x.

For later use, we will mention the well-known properties of the topological entropy [1]:

- (1.1) if $\alpha < \beta$ then $h(\varphi, \alpha) \leq h(\varphi, \beta)$
- (1.2) $h(\varphi_k) = |k| h(\varphi_1)$ for integer k.
- § 2. The theorem. Theorem. If X is a compact mentric space and $\{\varphi_t\}$ is a dynamical system. Then

(F)
$$h(\varphi_t) = |t| h(\varphi_1)$$
 for any real t .

Proof. For any pair $\varepsilon_1 > \varepsilon_2 > 0$, let α_i be the set of all open spheres of radius ε_i , i=1,2. Then $\alpha_1 < \alpha_2$.

Put $A_t = \{x \mid d(\varphi_s x, x) < \varepsilon_1 - \varepsilon_2 \text{ for } |s| \le t\}$, where d is the distance of X. Then, by the continuity of $\{\varphi_t\}$, the set A_t is an open set, and $A_t \subset A_{t'}$ if t > t', and moreover, $\bigcup_{t>0} A_t = X$. Thus, by the compactness of X, there exists a positive real number t_0 satisfying $A_{t_0} = X$.

If t, t' are arbitrary pair of positive numbers and T is an arbitrary large positive number, there exist positive integers p, n and m such that $t/p \leq t_0$,

^{*)} As in [1], we write $\alpha \vee \beta = \{U \cap V : U \in \alpha \ V \in \beta\}$ and we write $\alpha > \beta$ to mean that α is a refinement of β .

^{**)} On the measure theoretic entropy (F) is proved in [2]; much simpler proof is given in [3].

$$T-t/p \leq (m-1)t/p < T$$
 and $T-t' \leq (n-1)t' < T$.

Consequently, there exists a subsequence $\{m_k\}_{k=0}^{n-1}$ of $1, 2, \dots, m$ such that

$$|kt'-m_k(t/p)| \leq t_0$$
 for $k=1,2,\dots,n-1$.

We will show that

$$N(\alpha_1 \vee \varphi_{t'}\alpha_1 \vee \cdots \vee \varphi_{(n-1)t'}\alpha_1) \leq N(\alpha_2 \vee \varphi_{m_1(t/p)}\alpha_2 \vee \cdots \vee \varphi_{m_{n-1}(t/p)}\alpha_2).$$

Let $\{A_1, A_2, \dots, A_r\}$ be a minimal subover of

$$\alpha_2 \vee \varphi_{m_1(t/p)} \alpha_2 \vee \cdots \vee \varphi_{m_{n-1}(t/p)} \alpha_2.$$

A set A_i is written

$$A_i = A_0^{(i)} \cap \varphi_{m_1(t/p)} A_1^{(i)} \cap \dots \cap \varphi_{m_{(n-1)}(t/p)} A_{n-1}^{(i)}$$

 $A_k^{(i)} \in \alpha_2 \quad i = 1, 2, \dots, r. \quad k = 0, 1, 2, \dots, n-1.$

Now for each $A_k^{(i)}$ there exists a $B_k^{(i)}$ which belongs to α_1 and has the same center as the sphere $A_k^{(i)}$.

It follows from $|m_k(t/p) - kt'| \leq t_0$ that

$$\varphi_{m_k(t/p)-kt'}A_k^{(i)}\subset B_k^{(i)}$$
 and $\varphi_{m_k(t/p)}A_k^{(i)}\subset \varphi_{kt'}B_k^{(i)}$.

Thus
$$B_0^{(i)} \cap \varphi_{t'} B_1^{(i)} \cap \cdots \cap \varphi_{(n-1)t'} B_{n-1}^{(i)} \supset A_0^{(i)} \cap \varphi_{m_1(t/p)} A_1^{(i)} \cap \cdots \cap \varphi_{m_{n-1}(t/p)} A_{n-1}^{(i)}$$
 for $i = 1, 2, \dots, r$.

We thus obtain the relation

(2.1)
$$\log N(\alpha_1 \vee \varphi_{t'}\alpha_1 \vee \cdots \vee \varphi_{(n-1)t'}\alpha) \\ \leq \log N(\alpha_2 \vee \varphi_{(t/p)}\alpha_2 \vee \varphi_{2(t/p)}\alpha_2 \vee \cdots \vee \varphi_{m-1(t/p)}\alpha_2).$$

Since $\lim_{T\to\infty} T/n = t'$ and $\lim_{T\to\infty} T/m = t/p$, by dividing both sides of

(2.1) by T and then letting $T\rightarrow\infty$, we obtain the relation

$$\frac{1}{t'}h(\varphi_{t'},\alpha_1)\leqslant \frac{1}{(t/p)}h(\varphi_{t/p},\alpha_2).$$

Since $\varepsilon_1 > \varepsilon_2 > 0$ are arbitrary, it follows from the definition of the topological entropy that

$$\begin{split} &\frac{1}{t'}\,h(\varphi_{t'},\alpha_{\scriptscriptstyle 1})\!\leqslant\!\frac{1}{(t/p)}\,h(\varphi_{t/p})\\ \text{and} & &\frac{1}{t'}\,h(\varphi_{t'})\leqslant\frac{1}{(t/p)}\,h(\varphi_{t/p}) \end{split}$$

By the formular (1.2), we then get $\frac{1}{t'} h(\varphi_{t'}) \leqslant \frac{1}{t} h(\varphi_t)$. Reversing the role of t and t' in the argument above, we also obtain $\frac{1}{t'} h(\varphi_{t'}) \geqslant \frac{1}{t} h(\varphi_t)$; therefore, it follows that $\frac{1}{t} h(\varphi_t) = \frac{1}{t'} h(\varphi_{t'})$ for any pair t, t' > 0. In particular, $\frac{1}{t} h(\varphi_t) = h(\varphi_t)$ for any t > 0.

Since in general $h(\varphi) = h(\varphi^{-1})$ holds for a homeomorphism we finally get $\frac{1}{|t|} h(\varphi_t) = h(\varphi_1)$ for all real $t(\neq 0)$. q.e.d.

Finally we give a natural definition for the entropy of a dynamical system.

Definition. The entropy of a dynamical system $\{\varphi_t\}$ is defined to be $h(\varphi_1)$.

In conclusion I would like to express my thanks to Professor Yuji Ito for encouragement and valuable discussions.

References

- [1] R. Adler, A. Konheim and M. AcAndrew: Topological entropy. Trans. Amer. Math. Soc., 114, 309-319 (1965).
- [2] L. M. Abramov: On the entropy of a flow. Dok. Akad. Nauk. SSSR., 128, 873-875 (1959).
- [3] S. Ito: An elementary proof of Abramov's result on the entropy of a flow. Nagoya Math. Journal, 41 (1969).