182. Finite Automorphism Groups of Restricted Formal Power Series Rings

By Akira Endô

Department of Mathematics, Shimane University

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1969)

1. A formal power series $f = \sum_{i=0}^{\infty} a_i X^i$ with coefficients in a linearly topological ring A is called a restricted formal power series if the

sequence of its coefficients $\{a_i\}$ converges to 0. All of such formal power series forms a subring of the formal power series ring A[[X]], which is called a restricted formal power series ring and denoted by $A\{X\}$.

In [5], Samuel has obtained the following result:

Let A be a Noetherian complete local integral domain, and G a finite group consisting of A-automorphisms of A[[X]]. Then there exists a formal power series f such that the G-invariant subring of A[[X]] is A[[f]].

This is a generalization of the result of Lubin [2] which dealt with the case where A is the ring of p-adic integers and G is given by using a formal group law.

The main purpose of this paper is to prove the following:

Theorem. Let A be a Noetherian complete integral domain with the maximal ideal m, and G a finite group consisting of A-automorphisms of $A{X}$. If the residue class field A/m is perfect, there exists a series $f \in A{X}$ such that the G-invariant subring $A{X}^{G}$ of $A{X}$ is $A{f}$.

2. At first, we shall show some results concerning $A\{X\}$.

Lemma 1. Let A be a linearly topological ring whose topology is complete and T_0 . Then, $A{X+a}=A{X}$ for any $a \in A$.

Proof. For any $f = \sum_{i=0}^{\infty} a_i (X+a)^i \in A\{X+a\}$, we have $f = \sum_{i=0}^{\infty} b_i X^i$ in Al[X], where (b) converges to 0. Hence, $f \in A(X)$

in A[[X]], where $\{b_i\}$ converges to 0. Hence, $f \in A\{X\}$.

If a is an ideal of A, by $a\{X\}$ we denote the ideal of $A\{X\}$ consisting of all series $\sum_{i=0}^{\infty} a_i X^i$, $a_i \in a$.

Lemma 2. Let A be a linearly topological ring whose topology is complete and T_0 . Let m be a closed ideal of A such that every $m \in m$ is topologically nilpotent. If $f \in A\{X\}$ is a series such that $\overline{f} = f \mod m\{X\}$ is a unitary polynomial with the degree $s \ge 1$, then $A\{X\}$ is the finite module over its subring $A{f}$ with the free base $\{1, X, \dots, X^{s-1}\}$.

Proof. Let M be the $A\{f\}$ -module with the free base $\{1, X, \dots, X^{s-1}\}$. Let $\{\mathfrak{m}_{\lambda}\}$ be a family of ideals which defines the topology in A. Since by Lemma 1 we can assume that f(0)=0, we have $f^{n}\mathfrak{m}_{\lambda}\{X\}\subset X^{n}\mathfrak{m}_{\lambda}\{X\}$ for any n and λ . Therefore $A\{X\}$ is complete and T_{0} with respect to the topology defined by $\{f^{n}\mathfrak{m}_{\lambda}\{X\}\}$, i.e. $A\{X\}$ = $\lim_{\substack{\leftarrow n,\lambda \\ n,\lambda \\ n}} A\{X\}/f^{n}\mathfrak{m}_{\lambda}\{X\}$. M is complete and T_{0} with respect to the

topology as a finite $A\{f\}$ -module, i.e. $M = \lim_{\substack{\leftarrow n \\ n, \lambda}} M/f^n \mathfrak{m}_{\lambda}\{X\}M$. In [4],

Salmon has proved the preparation theorem for $A\{X\}$: For any $g \in A\{X\}$ there exists a unique $h \in A\{X\}$ such that g-fh is a polynomial with the degree at most s-1. In its proof it is shown that if \mathfrak{a} is an ideal of A and $g \in \mathfrak{a}\{X\}$ then $h \in \mathfrak{a}\{X\}$. Therefore, for any n and for any pair λ , μ such that $\mathfrak{m}_{\lambda} \supset \mathfrak{m}_{\mu}$, $f^{n}\mathfrak{m}_{\lambda}\{X\}/f^{n+1}\mathfrak{m}_{\mu}\{X\}$ is isomorphic to $f^{n}\mathfrak{m}_{\lambda}\{f\}M/f^{n+1}\mathfrak{m}_{\mu}\{X\}M$ as an $A\{f\}$ -module. Hence, it follows from Lemma 2 of [6] (p. 89) that $A\{X\}$ is isomorphic to M.

A-automorphisms of $A{X}$ are characterized as follows:

Proposition 1. Let A be a local integral domain with the maximal ideal m. If A is complete and T_0 , then any A-automorphism ψ of $A\{X\}$ is given as follows;

 $\begin{cases} \psi X = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \dots \in A\{X\},\\ where \ a_0 \in A, \ a_1 \in A - \mathfrak{m}, \ and \ a_i \in \mathfrak{m} \ if \ i \geq 2,\\ and\\ \psi a = a \ if \ a \in A. \end{cases}$

Proof. ψ is an A-automorphism of $A\{X\}$ if and only if $A\{\psi X\} = A\{X\}$ since $\psi A\{X\} = A\{\psi X\}$. By Lemma 1 we can assume that $\psi X \notin m\{X\}$. Let s be the degree of $\psi X \mod m\{X\}$. If s=0, then ψX is inversible in $A\{X\}$ [4]. Then it follows from Lemma 2 that ψ is an A-automorphism if and only if s=1.

The following two lemmas will be used to prove Proposition 2.

Lemma 3. Let R be a Noetherian complete local integral domain with the completion R^* . If R^* is an integrally closed integral domain, then R is also integrally closed.

Proof. This is a well-known result (for example, see [3], p. 135).

Lemma 4. Let R be an integrally closed integral domain with the maximal ideal m, K the quotient field, and k the residue class field of R mod m: k=R/m. If $f \in R[X]$ is an irreducible unitary polynomial such that $\overline{f} = f \mod(m) \in k[X]$ is irreducible and separable, then R'=R[X]/(f) is the integral closure of R in L=K[X]/(f) and is a local ring with the maximal ideal mR'.

Proof. Since the maximal ideal of R' corresponds to the irreducible component of \overline{f} , it is obvious that R' is a local ring. If R^*

No. 10]

is the integral closure of R in L, we have $dR^* \subset R' \subset R^*$ where d is the discriminant of f. Since \overline{f} is separable, d is not in m. Hence, it follows that $R' = R^*$.

Proposition 2. Let A be a Noetherian integrally closed complete local integral domain with the maximal ideal m. If the residue class field k=A/m is perfect, then $A\{X\}$ is integrally closed

Proof. Since $m\{X\}$ is the Jacobson radical of $A\{X\}$ [4] and $A\{X\}/m\{X\}=k[X]$, every maximal ideal \mathfrak{M} of $A\{X\}$ is in the form of $\mathfrak{M}=(\mathfrak{m}, f)A\{X\}$, where $f \in A[X]$ is a unitary polynomial such that $\overline{f}=f \mod \mathfrak{m}\{X\} \in k[X]$ is irreducible. We have $A\{X\}=\bigcap_{f} A\{X\}_{(\mathfrak{m},f)}$, where f runs the set of polynomials in A[X] satisfying the above conditions. $A\{X\}$ is integrally closed if and only if $A\{X\}_{(\mathfrak{m},f)}$ is integrally closed for all f. If f=X, the completion of the local ring $A\{X\}_{(\mathfrak{m},X)}$ is A[[X]] which is integrally closed. It follows from Lemma 3 that $A\{X\}_{(\mathfrak{m},X)}$ is integrally closed. If $f=X^s+a_{s-1}X^{s-1}+\cdots+a_1X+a_0$, then by Lemma 2 we have $A\{X\}=A\{f\}[T]/(T^s+a_{s-1}T^{s-1}+\cdots+a_1T+a_0-f)$ is a local ring with the maximal ideal generated by (\mathfrak{m}, f) , i.e. $A\{X\}_{(\mathfrak{m},f)}$. Since $A\{f\}/(\mathfrak{m}, f)=A/\mathfrak{m}$ is perfect, it follows from Lemma 4 that $A\{X\}_{(\mathfrak{m},X)}$ is integrally closed.

It is well-known that any Noetherian complete local integral domain has the following property:

Let R be an integral domain, K the quotient field of R, and L a finite extention of K. If R' is the integral closure of R in L, then R' is a finite R-module.

Next, we shall show that $A{X_1, \dots, X_n}$ has this property.

Proposition 3. Let A be a Noetherian complete local integral domain with the maximal ideal m. Let K be the quotient field of $R = A\{X_1, \dots, X_n\}$, and L a finite extension of K. Then the integral closure R' of R in L is a finite R-module.

Proof. Let p be the characteristic of K. If p=0, our assertion is trivial since R is Noetherian [4] and L is separable over K. Hence we need only to prove this proposition in the case of $p \neq 0$. There exists a regular local subring B of A such that A is a finite B-module. Let n be the maximal ideal of B. Since the topology of A coincides with that of A as a finite B-module by Theorem (16.8) in [3], there exists h>0 such that $m^n \subset nA \subset m$. Hence it follows that $A\{X\}$ is a finite $B\{X\}$ -module. Since R' is the integral closure of $B\{X\}$, we need only to prove this proposition in the case of that A is regular. In this case A is isomorphic to $k[[T_1, \dots, T_r]], k=A/m$ by Cohen's structure theorem. Then we have $A\{X_1, \dots, X_n\}\cong k[X_1, \dots, X_n][[T_1, \dots, T_r]]$. Now, Proposition 3 follows from (0, 23.1.4) of [1]. The following lemma will be used to prove the theorem.

Lemma 5. Let A be a Noetherian complete local integral domain with the maximal ideal m, and A' the integral closure in the quotient field of A. If $f \in A\{X\}$ is a series such that $f \notin m\{X\}$ and $f(0) \in m$, then $A'\{f\} \cap A\{X\} = A\{f\}$.

Proof. In [5], it is proved that $A'[[f]] \cap A[[X]] = A[[f]]$. Since $f \in A\{X\}, A'\{f\} \cap A[[X]] \subset A\{X\}$. Then we have $A'\{f\} \cap A\{X\} = A'\{f\} \cap A[[X]] = A'\{f\} \cap A'[[f]] \cap A[[X]] = A'\{f\} \cap A[[f]] = A\{f\}$.

3. Proof of the theorem. Put $f = \prod_{\varphi \in G} \psi X$. The degree of $f \mod m\{X\}$ is equal to the order of G. We have $A\{f\} \subset A\{X\}^{G} \subset A\{X\}$. It follows from Lemma 2 that $A\{X\}^{G}$ is integral over $A\{f\}$ and $A\{X\}^{G}$ has the same quotient field of $A\{f\}$. If A is integrally closed, then $A\{f\}$ is also integrally closed by Proposition 2, and hence $A\{X\}^{G} = A\{f\}$. In the general case, if A' is the integral closure of A, A' satisfies conditions of Proposition 2. Then we have $A'\{X\}^{G} = A'\{f\}$. Since f(0) = 0, it follows from Lemma 5 that $A\{X\}^{G} = A'\{X\}^{G} \cap A\{X\} = A'\{f\}$.

As was shown above, it seems that the essential part in the proof of the theorem is to show that $A\{X\}$ is integrally closed (Proposition 2). It is not an essential condition that A/m is perfect. For example, if A is a complete regular local ring, the theorem is true since $A\{X\}$ is a regular ring [4], and hence it is an integrally closed ring.

References

- Grothendieck, A.: Eléments de géométrie algébrique. IV (première partie). Pub. Math., 20, I.H.E.S. (1964).
- [2] Lubin, J.: Finite subgroups and isogenies of one-parameter formal Lie group. Ann. of Math., 85, 296-302 (1967).
- [3] Nagata, M.: Local Rings. Interscience Pub. (1960).
- [4] Salmon, P.: Sur les séries formelles restreintes. Bull. Soc. Math. France, 92, 385-410 (1964).
- [5] Samuel, P.: Groupes fini d'automorphisms des anneaux de séries formelles. Bull. Sci. Math., 90, 97-101 (1966).
- [6] Serre, J. P.: Corps locaux. Hermann (1962).