15. Remark on the $A^p(G)$ -algebras*

By Hang-Chin LAI
Mathematical Institute, Tôhoku University, Sendai
and
Institute of Mathematics, National Tsing Hua University, Taiwan
(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1970)

- 1. Introduction. Let G denote a locally compact abelian topological group with character group \hat{G} , and dx (respect $d\hat{x}$) expresses the integration over G (resp. \hat{G}) with respect to the Haar measure. For $1 \le p < \infty$, $A^p(G)$ denotes the linear space of all complex-valued functions in $L^1(G)$ whose Fourier transforms are in $L^p(\hat{G})$. As the linear space $A^p(G)$ is normed by $||f||^p = ||f||_1 + ||\hat{f}||_p$, then $A^p(G)$ is a semi-simple commutative Banach algebra under convolution as multiplication (see Larsen, Liu and Wang [2]). In this note, we shall show that it is regular and that some local properties hold in it (cf. Rudin [5], section 2.6). It is also proved that the abstract Silov's theorem (see Loomis [4] p. 86) holds for $A^p(G)$. The standard proof of this theorem in $L^1(G)$ (cf. Loomis [4] p. 151) seems to depend upon the uniform boundedness of the approximate identity. The author proved that the approximate identity exists for $A^{p}(G)$ but uniformly bounded in general (see Lai [3]). However a similar proof is obtained despite of the fact that the approximate identity in $A^{p}(G)$ is unbounded.
 - 2. Closed ideals and locally properties in the algebra $A^{p}(G)$.

Since $A^p(G)$ has an approximate identity in the sense of Theorem 1 in Lai [3], the following proposition is immediately.

Proposition 1. The set J of all functions of $A^p(G)$ such that the Fourier transforms have compact supports in \hat{G} is a dense ideal in $A^p(G)$ with respect to A^p -topology.

The following theorem proved for $L^{\scriptscriptstyle 1}(G)$ in Loomis [4: Theorem 31 F]

Theorem 2. A closed subset I of $A^p(G)$ is an ideal if and only if it is a translation invariant subspace.

Proof. The necessity is immediate since $A^{p}(G)$ has approximate identity and the translation operator is a multiplier.

For the sufficiency, we suppose that I is a closed translation invariant subspace and consider the mapping $f \rightarrow (f, \hat{f})$ of $A^p(G)$ in $L^1(G) \times L^p(G)$, so that each continuous linear functional of $A^p(G)$ may

^{*)} This research was supported by the Mathematics Research Center, National Science Council, Taiwan, Republic of China.

be expressed in the form

$$F(f) = \int_{a} f(x)g(x)dx + \int_{\hat{a}} \hat{f}(\hat{x})\varphi(\hat{x})d\hat{x}$$
$$= \langle f, g \rangle + \langle \hat{f}, \varphi \rangle$$

for some pair $(g, \varphi) \in L^{\infty}(G) \times L^{q}(\hat{G})$, where 1/p + 1/q = 1.

Let $I_p = \{(g, \varphi) \in L^{\infty}(G) \times L^q(\hat{G}); F(f) = \langle f, g \rangle + \langle f, \varphi \rangle = 0$, for any $f \in I\}$. Since I is closed, $(I^{\perp})^{\perp} = I$ (cf. Loomis [4; 8c]). For $h \in A^p(G)$, $f \in I$ and $(g, \varphi) \in I_p = I^{\perp}$, we have

$$F(h*f) = \int_{G} h*f(x)g(x)dx + \int_{\hat{\sigma}} h*f(\hat{x})\varphi(\hat{x})d\hat{x}$$

$$= \int_{G} h(y)dy \left(\int_{G} \rho_{y}f(x)g(x)dx + \int_{\hat{\sigma}} \rho_{y}\hat{f}(\hat{x})\varphi(\hat{x})d\hat{x} \right)$$

$$= 0$$

since I is translation invariant subspace, $f \in I$ implies $\rho_y f \in I$, where $\rho_y f(x) = f(x-y)$. Therefore $h * f \in I$, this shows that the closed subspace I is an ideal of $A^p(G)$.

The following theorem is similar to the Theorem 2.6.2 in Rudin [5] which is proved for $L^{1}(G)$.

Theorem 3. Let K be any compact set in G containing 0 and U be any open neighborhood of K. Then there exists a function $f \in A^p(G)$ such that $\hat{f} = 1$ on K, $\hat{f} = 0$ outside U and $0 \le \hat{f} \le 1$.

Proof. Let V be a symmetric compact neighborhood of the origin in \hat{G} so that U contains K+V+V and g,h be functions in $L^2(G)$ such that \hat{g} and \hat{h} are the characteristic functions of V and K+V respectively. Define

$$k(x) = \frac{g(x)h(x)}{m(V)}$$
 $x \in G$

where m(V) is the Haar measure of V. It is then clear that the function $k \in A^p(G)$ is desired. Q.E.D.

Remark. By translation, this theorem holds for any compact set K in \hat{G} and any open neighborhood U of K.

The following theorem is essential in later.

Theorem 4. Suppose that $f \in A^p(G)$ with $\hat{f}(0) = 0$ and that $\{U_i\}$ is a neighborhood system of 0 in G with measure less than or equal to 1, then given any $\varepsilon > 0$, there is a net $\{k_i\}$ in $A^p(G)$ such that

- $(i) \|k_1\|^p < 3,$
- (ii) $\hat{k}_{\lambda}=1$ on some neighborhood of 0 in U_{λ} and $\hat{k}_{\lambda}=0$ outside U_{λ} ,
- (iii) $||f*k_{\lambda}||^p < \varepsilon$.

Proof. For $f \in A^p(G)$ and $\hat{f}(0) = 0 = \int_G f(x) dx$, there is a neighborhood U_i of 0 in \hat{G} such that

$$\left(\int_{U_2} |\hat{f}(\hat{x})|^p d\hat{x}
ight)^{1/p} < arepsilon/2.$$

Put

$$\delta = \frac{\varepsilon}{8(1+\|f\|_1)}.$$

There is a compact set E in G such that

$$\int_{E'} |f(x)| \, dx < \delta,$$

where E' is the complement of E in G. We can find a compact set $K_{\lambda} \ni 0$ and a symmetric compact neighborhood V_{λ} in \hat{G} subject to the same places of K and V in Theorem 3. Furthermore they satisfy the following conditions

- 1 0 is an interior point of K_{λ}
- $2 m(K_{\lambda}+V_{\lambda}) < 4m(V_{\lambda})$
- 3 The neighborhood $U_1 \supset K_1 + V_2 + V_3$
- 4 $|1-(x,\hat{x})| < \delta$ whenever $x \in E$ and $\hat{x} \in U_{\lambda}$.

Let g_{λ} and h_{λ} be functions in $L^{2}(G)$ such that g_{λ} and h_{λ} are the characteristic functions of V_{λ} and $K_{\lambda} + V_{\lambda}$ respectively. Define

$$k_{\lambda}(x) = \frac{g_{\lambda}(x)h_{\lambda}(x)}{m(V_{\lambda})} \qquad (x \in G).$$

Then $k \in A^p(G)$ with $\widehat{k_{\lambda}} = 1$ on K_{λ} and $\widehat{k_{\lambda}} = 0$ outside U_{λ} , proves (ii).

Since $\hat{g_{\lambda}} * \hat{h_{\lambda}} \in C_c \subset L^p$,

$$\|\widehat{k}_{\lambda}\|_{p} = \frac{1}{m(V_{\lambda})} \|\widehat{g}_{\lambda} * \widehat{h}_{\lambda}\|_{p} \le \frac{1}{m(V_{\lambda})} \|\widehat{g}_{\lambda}\|_{\ell} \|h_{\lambda}\|_{p}$$
$$= [m(V_{\lambda} + K_{\lambda})]^{1/p} < 1,$$

thus $\|\hat{k}_{\lambda}\|_{p} < 1$. And

$$||k_{\lambda}||_{1} = \frac{1}{m(V_{\lambda})} \int_{G} |g_{\lambda}(x)h_{\lambda}(x)| dx \leq \frac{1}{m(V_{\lambda})} ||g_{\lambda}||_{2} ||h_{\lambda}||_{2} < 2,$$

hence $||k_{\lambda}||^p < 3$, proves (i).

Next, by $\hat{f}(0) = 0 = \int_{G} f(x) dx$, we see that

$$f*k_{\lambda}(x) = \int_{G} f(y)(k_{\lambda}(x-y) - k_{\lambda}(x))dy,$$

and

$$||f*k_{\lambda}||^{p} = ||f*k_{\lambda}||_{1} + ||\hat{f}\hat{k}_{\lambda}||_{p}.$$

It is not difficult to show that

$$||f*k_{2}||_{1} < 4\delta(1+||f||_{1}) < \varepsilon/2.$$

On the other hand,

$$\|\widehat{f}\,\widehat{k}_{\lambda}\|_{p}^{p} = \left(\int_{\widehat{\sigma}} |\widehat{f}(\widehat{x})\widehat{k}_{\lambda}(\widehat{x})|^{p} dx\right) = \int_{U_{\lambda}} + \int_{U_{\lambda'}}.$$

The integral over U_{λ} is less than

$$\sup_{\hat{x}\in \hat{U}_{\lambda}}|\hat{k_{\lambda}}(\hat{x}')|^{p}(arepsilon/2)^{p}\!<\!(arepsilon/2)^{p}$$

and the integral over the complement U_i of U_i is zero. Hence

$$\|\hat{f}\hat{k}_{i}\|_{n} < \varepsilon/2.$$

Therefore

$$||f*k_1||^p < \varepsilon$$
,

proves (iii).

Q.E.D.

Remark. By translation, this theorem holds for the case of $\hat{f}(\hat{x}_0) = 0$ for some $\hat{x}_0 \in \hat{G}$ in which $\{U_i\}$ is a neighborhood system of \hat{x}_0 in \hat{G} .

Corollary 5. For any $\varepsilon > 0$, and $y \in E$ (compact set in G) then there is a function k, in $A^p(G)$ on which the Fourier transform has compact support such that

$$\|\rho_{y}k_{\lambda}-k_{\lambda}\|^{p}<\varepsilon.$$

Choose k_i in the net $\{k_i\}$ of Theorem 4, then one can show immediately.

The following theorem is important for the later proof of Silov's theorem for the algebra $A^p(G)$ (cf. Theorem 2.6.4 of Rudin [5]).

Theorem 6. Suppose that $f \in A^p(G)$ such that $\hat{f}(0) = 0$, then there exists a net $\{v_a\}\subset A^p(G)$ with $\hat{v}_a=0$ in a neighborhood of 0 in \hat{G} and such that

$$\lim_{a} \|f * v_a - f\|^p = 0.$$

Proof. Let $\{e_s\}$ be an approximate identity for $A^p(G)$ in the sense Suppose that the net $\{k_i\}$ is constructed as in Theorem 4. of Lai [3]. Define

$$v_a = e_{\beta} - k * e_{\beta}$$
, a is the ordered pair (β, λ) .

Evidently $v_a \in A^p(G)$ and the set $\{v_a\}$ may be directed by

$$(\beta_1, \lambda_1) = a_1 > a_2 = (\beta_2, \lambda_2)$$
 if and only if $\beta_1 > \beta_2$ and $\lambda_1 > \lambda_2$.

Then $\hat{v}_a = \hat{e}_{\beta}(1 - \hat{k}_i) = 0$ on some compact neighborhood of 0 in \hat{G} since $\hat{k}_{\lambda} = 1$ on some compact set containing the origin 0 as interior point,

$$||v_a*f - f||^p = ||e_{\beta}*f - k*e_{\beta}*f - f||^p \leq ||e_{\beta}*f - f||^p + ||k*(e_{\beta}*f)||^p.$$

 $\leq \|e_{\beta}*f - f\|^{p} + \|k*(e_{\beta}*f)\|^{p}.$ Since $\lim_{\beta} \|e_{\beta}*f - f\|^{p} = 0$ and $\lim_{\lambda} \|k_{\lambda}*(e_{\beta}*f)\|^{p} = 0$ (by Theorem 4), $\lim_{\alpha} \|v_{\alpha}*f - f\|^{p} = 0.$ Q

$$\lim_{a} \|v_a * f - f\|^p = 0.$$
 Q.E.D.

3. Silov's theorem for $A^{p}(G)$. Let \mathfrak{M} be the set of all regular maximal ideals of a commutative Banach algebra A. The set Δ of all continuous homomorphism of A into the complex number field is a subset of the conjugate space A^* of A and Δ is a locally compact space in the weak*-topology of A^* . The set Δ can be identified with \mathfrak{M} . The set of all regular maximal ideals M which contains an ideal I is called the hull of I, i.e. the hull $h(I) = \{M \in \mathfrak{M} ; M \supset I\}$. subset in \mathfrak{M} , the kernel $k(E) = \{ f \in A ; \hat{f}(M) = 0 \text{ for all } M \in E \} = \bigcap_{M \in E} M$, which is an ideal of elements $f \in A$ such that $\hat{f} = 0$ on E. If the closure of E in \mathfrak{M} is defined as h(k(E)), then the closure can be to introduce a topology \mathfrak{F}_{hk} in the space of \mathfrak{M} . In general, \mathfrak{F}_{hk} is weaker than the

weak*-topology \mathfrak{J}_w . As this topology \mathfrak{J}_{hk} coincides with the weak*-topology \mathfrak{J}_w on \mathfrak{M} , then the algebra A is called regular. Silove proved the following (cf. Loomis [4] p. 86, p. 151)

Theorem. Let A be a regular semi-simple commutative Banach algebra satisfying the condition D and let I be a closed ideal of A. Then I contains every element f in k(h(I)) such that the intersection of the boundary of hull (f) with hull (I) includes no non-zero perfect set.

Here we say the algebra A satisfying the Ditkin's condition (simply, say the condition D) if for any $f \in M \in \mathbb{M}$, there exists a sequence $\{f_n\}$ in A such that $\hat{f}_n = 0$ in a neighborhood V_n of M and $\lim f f_n = f$ in A. If \mathbb{M} is not compact the condition D must be also satisfied for the point at infinity, i.e. for any $f \in A$, there exists a sequence $\{f_n\}$ in A such that $\{\hat{f}_n\} \subset C_c(\mathbb{M})$ with $\lim f f_n = f$ in A.

We shall show that $A^p(G)$ is regular and satisfies the condition D and hence Silov's theorem holds for $A^p(G)$. It is known that $A^p(G)$ is a semi-simple Banach algebra, the regular maximal ideal space \mathfrak{M} can be identified with the character group \hat{G} . For any $\hat{x} \in \hat{G}$, there corresponds a regular maximal ideal $M_{\hat{x}} \in \mathfrak{M}$ by

$$M_{\hat{x}} = \{ f \in A^p(G) ; \hat{x}(f) = 0 = \hat{f}(\hat{x}) \} = \hat{x}^{-1}(0).$$

Theorem 7. The algebra $A^p(G)$ is regular.

Proof. It sufficies to show that for any closed subset $F \subset \hat{G}$ and any point $\hat{x}_0 \notin F$, there exists a function $f \in A^p(G)$ such that

$$\hat{f} = 0$$
 on F and $\hat{f}(\hat{x}) = 0$

(cf. Loomis [4] p. 57). Let $U = \hat{G} - F$. Then U is an open set and $\hat{x}_0 \in U$. Choose a compact neighborhood K of \hat{x}_0 such that $K \subset U$. By Theorem 3 (Remark), there exists a function $k \in A^p(G)$ such that

$$\hat{k}=1$$
 on K and $\hat{k}=0$ outside U .

Therefore $A^{p}(G)$ is regular.

Q.E.D.

Lemma 8. $A^p(G)$ satisfies the condition D at every point \hat{x} in G.

Proof. This Lemma follows from Theorem 6. That is $A^p(G)$ satisfies the condition D at the origin of G, then it holds for the points upon translation.

Lemma 9. The algebra $A^p(G)$ satisfies the condition D for the point at infinity (cf. Loomis [4] p. 149 Lemma).

Proof. This Lemma holds only for the case of non-discrete group G. The proof is similar to the case of $L^1(G)$ except the case of bounded approximate identity in $L^1(G)$.

As G is non-discrete, \hat{G} is not compact. By Proposition 1, for any $f \in A^p(G)$, there exists a sequence $\{v_n\}$ in J such that

$$\lim f * v_n = f \qquad \text{in } A^p(G).$$
 G.E.D.

By Lemmas 8, 9 and Theorem 7, we see immediately that the

Silov's theorem is valid for $A^p(G)$. We restate the theorem as following (4 p. 151).

Theorem 10. Let I be a closed ideal in $A^p(G)$ and $f \in A^p(G)$ such that $f \in k(h(I))$. Suppose furthermore that the intersection of the Silov's boundary hull (f) and hull (I) contains only the set of isolated points. Then $f \in I$.

Corollary 11. If I is a closed ideal in $A^p(G)$ whose hull is discrete, then I = k(h(I)).

References

- [1] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis. I. Springer-Verlag Berlin Gottingen Heit (1963).
- [2] R. Larsen, T-S Liu, and J-K Wang: On functions with Fourier transforms in L^p . Michigan Math. J., 11, 369-378 (1964).
- [3] H-C Lai: On some properties of $A^p(G)$ -algebras (to appear).
- [4] L. H. Loomis: An Introduction to Abstract Harmonic Analysis. Van Nostrand, New York (1953).
- [5] W. Rudin: Fourier Analysis on Groups. Interscience Publishers, New York (1962).
- [6] C. R. Warner: Closed ideals in the group algebra L^1 L^2 (G). Trans. Amer. Math. Soc., **121**, 408-423 (1966).