14. Some Cross Norms which are not Uniformly Cross

By Takateru Okayasu
College of General Education, Tôhoku University, Sendai
(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1970)

It is known that all C^{*}-norms in the algebraic tensor product of two C^{*}-algebras are cross. We shall show that no C^{*}-norms are uniformly cross in R. Schatten's sense [4] in the algebraic tensor product of two non-abelian C^{*}-algebras if one of them has an anti-*automorphism of period two. Also, some examples will show that actually there are not uniformly cross C^{*}-norms. This fact may be felt strange at a glance and will be worth researching.

The author wishes to express his thanks to Prof. M. Takesaki for giving him a suggestion on this subject.

1. Preliminaries. Let E and F be Banach spaces, $E \odot F$ the algebraic tensor product of E and $F,\| \|_{\beta}$ a norm in $E \odot F$ and $E \widehat{\bigotimes}_{\beta} F$ the tensor product of E and F with respect to $\left\|\|_{\beta}\right.$, that is, the completion of $E \odot F$ with respect to $\left\|\|_{\beta}\right.$.

If $\left\|\|_{\beta}\right.$ satisfies the relation
$\|u \otimes v\|_{\beta}=\|u\|\|v\|$ for each $u \in E$ and $v \in F$,
then it is said to be cross; also, if $\left\|\|_{\beta}\right.$ is cross and if for each pair of bounded linear operators ρ on E and σ on F, the relation
$\left\|\Sigma_{i} \rho\left(u_{i}\right) \otimes \sigma\left(v_{i}\right)\right\|_{\beta} \leqq\|\rho\|\|\sigma\|\left\|\Sigma_{i} u_{i} \otimes v_{i}\right\|_{\beta} \quad$ for each $\Sigma_{i} u_{i} \otimes v_{i} \in E \odot F$ is satisfied, in other words, the operator norm of the linear operator

$$
(\rho \otimes \sigma)\left(\Sigma_{i} u_{i} \otimes v_{i}\right)=\Sigma_{i} \rho\left(u_{i}\right) \otimes \sigma\left(v_{i}\right)
$$

on $E \odot F$ is finite and not greater than $\|\rho\|\|\sigma\|$, then $\left\|\|_{\beta}\right.$ is said to be uniformly cross (see [4], V and VI in pp. 28-29).

Let A and B be C^{*}-algebras. A norm $\left\|\|_{\beta}\right.$ in the algebraic tensor product $A \odot B$ of A and B is called a C^{*}-norm if $\left\|t^{*} t\right\|_{\beta}=\|t\|_{\beta}^{2}$ for all $t \in A \odot B$. It is obvious that if $\left\|\|_{\beta}\right.$ is a C^{*}-norm then $A \widehat{\otimes}_{\beta} B$ becomes a C^{*}-algebra in the usual way.

The most natural C^{*}-norm in $A \odot B$ is the α-norm $\left\|\|_{\alpha}\right.$ defined by $\left\|\Sigma_{i} a_{i} \otimes b_{i}\right\|_{\alpha}=\left\|\Sigma_{i} \pi_{1}\left(a_{i}\right) \otimes \pi_{2}\left(b_{i}\right)\right\| \quad$ for $\Sigma_{i} a_{i} \otimes b_{i} \in A \odot B$,
using arbitrarily chosen faithful *-representations π_{1} of A and π_{2} of B, where the right side means the operator norm of the operator $\Sigma_{i} \pi_{1}\left(a_{i}\right)$ $\otimes \pi_{2}\left(b_{i}\right)$ on the tensor product $H_{1} \otimes H_{2}$ of the representation Hilbert spaces H_{1} of π_{1} and H_{2} of π_{2} (see [6], [7]). Another C^{*}-norm in $A \odot B$ is referred to [1] and [3].

The reason why a C^{*}-norm $\left\|\|_{\beta}\right.$ is cross lies in the facts that the α-norm is cross, that $\|t\|_{\alpha} \leqq\|t\|_{\beta}$ (Theorem 2 in [5]) and that $\|x \otimes y\|_{\beta}$
$\leqq\|x\|\|y\|$ (Theorem 1 in [3]).
2. A theorem.

Theorem. Let A and B be non-abelian C^{*}-algebras with identities, $\left\|\|_{\beta} a C^{*}\right.$-norm in $A \odot B, \pi_{1} a^{*}$-automorphism of A and π_{2} an anti-*-automorphism of B of each period two. Then, the operator norm $\left\|\pi_{1} \otimes \pi_{2}\right\|_{\beta}$ of the operator $\pi_{1} \otimes \pi_{2}$ in $A \odot B$ with respect to $\left\|\|_{\beta}\right.$ is greater than 1.

Proof. If $\pi_{1} \otimes \pi_{2}$ is bounded with respect to $\left\|\|_{\beta}\right.$, it can be extended to a bounded linear operator on $A \widehat{\otimes}_{\beta} B$ which is denoted by $\pi_{1} \otimes \pi_{2}$ again. Since $\pi_{1} \otimes \pi_{2}$ fixes the identity of $A \hat{\bigotimes}_{\beta} B,\left\|\pi_{1} \otimes \pi_{2}\right\|_{\beta} \geqq 1$.

Suppose that $\left\|\pi_{1} \otimes \pi_{2}\right\|_{\beta}=1$. Then, $\pi_{1} \otimes \pi_{2}$ is an isometry with respect to $\|\quad\|_{\beta}$ because $\left(\pi_{1} \otimes \pi_{2}\right)^{-1}=\pi_{1}^{-1} \otimes \pi_{2}^{-1}=\pi_{1} \otimes \pi_{2}$ on $A \odot B$. Thus, by Kadison's theorem [2], we know that $\pi_{1} \otimes \pi_{2}$ is a C^{*}-homomorphism, that is, an adjoint- and square-preserving linear operator. On the other hand, there are elements $x_{1}, x_{2} \in A$ and $y_{1}, y_{2} \in B$ such that $x_{1} x_{2} \neq x_{2} x_{1}$ and $y_{1} y_{2} \neq y_{2} y_{1}$. Put here $t=x_{1} \otimes y_{1}+x_{2} \otimes y_{2}$. Then a simple computation shows that

$$
\left(\pi_{1} \otimes \pi_{2}\right)\left(t^{2}\right) \neq\left(\left(\pi_{1} \otimes \pi_{2}\right)(t)\right)^{2}
$$

a contradiction. Therefore the proof is completed.
Directly from the above theorem, we know that if A and B are non-abelian C^{*}-algebras with identities and if B has an anti-*automorphism of period two then no C^{*}-norms in $A \odot B$ are uniformly cross. In fact, denoting by c the identity $*$-automorphism of A and by φ an anti-*-automorphism of B in the assumption, we have

$$
\|\epsilon \otimes \varphi\|_{\beta}>1=\|\epsilon\|\|\varphi\|
$$

3. Examples. In the following, we shall consider some examples. Let H be a Hilbert space, $\left(\xi_{\mu}\right)_{\mu \in I}$ a complete orthonormal system of $H, B(H)$ the C^{*}-algebra of bounded linear operators on H which are regarded as matrices with respect to $\left(\xi_{\mu}\right), \tau$ the transposition of $B(H)$ with respect to $\left(\xi_{\mu}\right)$:

$$
y=\left(\lambda_{\mu_{\nu}}\right) \rightarrow{ }^{t} y=\left(\lambda_{\nu \mu}\right) .
$$

It is easy to see that τ is an anti-*-automorphism of $B(H)$ of period two. Thus we know, from the theorem mentioned above, that if A is a non-abelian C^{*}-algebra with an identity ι the identity *-automorphism of A and $\left\|\|_{\beta}\right.$ a C^{*}-norm in $A \odot B(H)$ then $\| \iota \otimes \tau \|_{\beta}>1$ and no C^{*}-norms in $A \odot B(H)$ are uniformly cross.

We want to proceed to consider the operator $\iota \otimes \tau$. Suppose moreover that A is acting on a Hilbert space K, then, $A \odot B(H)$ becomes a sub-algebra of the von Neumann algebra tensor product $B(K) \otimes B(H)$ and the α-norm in $A \odot B(H)$ coincides with the operator norm \| \|. By an easy computation, it turns out that the operator $c \otimes \tau$ is nothing but a generalized transposition of $A \odot B(H)$ with respect to $\left(\xi_{\mu}\right)$:

$$
\left(x_{\mu_{\nu}}\right) \rightarrow\left(x_{\nu \mu}\right)
$$

Next, let $A=B(K)$ and let H and K are infinite-dimensional. Then it is concluded that $\iota \otimes \tau$ in $A \odot B(H)$ is unbounded with respect to the α-norm, that is, that $\|\iota \otimes \tau\|_{\alpha}=\infty$ happens.

The reason is as following. Let $\left(\eta_{k}\right)_{\kappa \in J}$ be a complete orthonormal system of K and $B(K)$ be represented as the matrix algebra with respect to $\left(\eta_{k}\right)$. We may assume that the sets I and J contain the sequence of positive integers. When we put
and

$$
x^{(k)}=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & \frac{k}{1} \\
& & 0 & \cdots \\
& & & & \\
& & 0 & & \\
& & & & \\
& & & &
\end{array}\right], \quad k=1,2, \cdots,
$$

$$
t^{(n)}=\left[\begin{array}{cc}
x^{(1)} & \\
x^{(2)} & \\
\vdots & \\
x^{(n)} & 0 \\
0 & \\
0 &
\end{array}\right], \quad n=1,2, \cdots
$$

then $\left\{t^{(n)}\right\} \subset A \odot B(H)$ and $\left\|t^{(n)}\right\|_{\alpha}=1$, while $\left\|(c \otimes \tau)\left(t^{(n)}\right)\right\|_{\alpha}=\sqrt{n}$, $n=1,2, \cdots$. Therefore $\|\epsilon \otimes \tau\|_{\alpha}=\infty$.

At last several remarks we give. (a) If A is an abelian C^{*}-algebra, then the α-norm is the only C^{*}-norm in $A \odot B(H)$ (see [5]) and $\iota \otimes \tau$ in $A \odot B(H)$ can be extended to an anti-*-automorphism on the tensor product $A \widehat{\otimes}_{\alpha} B(H)$ of course with $\|\iota \otimes \tau\|_{\alpha}=1$.
(b) If A is a non-abelian C^{*}-algebra with an identity and if H is finite-dimensional, then the α-norm is the only C^{*}-norm also ([5]), $A \odot B(H)$ is complete with respect to it and $\infty>\|\iota \otimes \tau\|_{\alpha}>1$.
(c) If a C^{*}-algebra A contains a family of infinite number of equivalent projections which are mutually orthogonal, and if H is infinite-dimensional, then $\iota \otimes \tau$ on $A \odot B(H)$ is unbounded with respect to the α-norm. As such A we can consider for example a C^{*}-algebra which contains a factor of type I_{∞}. The proof is an easy modefication of the above discussion.

References

[1] A. Guichardet: Tensor products of C^{*}-algebras. Doklady Acad, Sci. USSR, 160, 986-989 (1965); Soviet Math., 6, 210-213 (1965).
[2] R. V. Kadison: Isometries of operator algebras. Ann. Math., 54, 325-338 (1951).
[3] T. Okayasu: On the tensor products of C^{*}-algebras. Tôhoku Math. Journ., 18, 325-331 (1966).
[4] R. Schatten: A Theory of Cross-Spaces. Princeton (1950).
[5] M. Takesaki: On the cross-norm of the direct product of C^{*}-algebras. Tôhoku Math. Journ., 16, 111-122 (1964).
[6] T. Turumaru: On the direct product of operator algebras. Tôhoku Math. Journ., 4, 242-252 (1952).
[7] A. Wulfsohn: Produit tensoriel de C^{*}-algèbres. Bull. Sci. Math., 87, 13-27 (1963).

