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4. On wM.Spaces. II

By Tadashi IsHII
Utsunomiya University

(Comm. by Kinjir6 KUNUGI, M. J. A., Jan. 12, 1970)

1. Introduction. Thisis the continuation of our previous paper
[6]. The purpose of this paper is to study metrizability of wM-spaces
and to give a solution to a problem under what conditions a wM-space
is an M-space.

Definition. A topological space X has a G,(k)-diagonal (G,(k)-
diagonal, k=1,2, - . ., if there exists a sequence {8,} of open coverings
of X such that for distinct points z, ¥ there exists some B,, such that
y ¢ Ste(z, B,,) (y ¢ Sté(x, B,.)).

By J. G. Ceder [5], a space X has a G,(1)-diagonal (=G,-diagonal
in [4]) if and only if the diagonal 4 of X x X is a G,-subset of X x X.

2. Metrizability of wM-.spaces.

We shall prove some metrization theorems for wM-spaces.

Theorem 2.1. In order that a space X be metrizable it is neces-
sary and sufficient that X be a normal wM-space which has a G,(1)-
diagonal.

Proof. The necessity of the condition is obvious. To prove the
sufficiency of the condition, let X be a normal wM-space with a de-
creasing sequence {¥%,} of open coverings of X satisfying (M,), and
suppose that X has a G,(1)-diagonal, that is, there exists a decreasing
sequence {%,} of open coverings of X such that for distinct points x, y
there exists some 2B, such that ye¢ St(x,L,). Then clearly X is
Hausdorff. Let us put 8,=%,N%B,,n=1,2,.... Then it is proved
that {St(x, B,) |n=1,2, - - .} is a basis for neighborhoods at each point
x of X. Indeed, if not, then there exist a point z, of X and an
open subset U of X such that z,¢ U and St(z,, B,)—U=x0 for each n.
Let z, e St(x, ®8,)—U,n=1,2,.... Then by (M, the sequence {z,}
has an accumulation point ¥ which is contained in X—U. Since
%%y, we have y e St(z,, I8,) for some k, while y ¢ NSt(z,, !W,). This
is a contradiction, and hence {St(z, 2, |n=1,2,...} is a basis for
neighborhoods at each point x of X. On the other hand, as is proved
in our previous paper [6], every normal wWW-space X is collectionwise
normal (cf. [6, Theorem 2.4]), Hence, by a theorem of R. H. Bing
[2], X is metrizable. Thus we complete the proof.

Theorem 2.2. In order that a space X be metrizable it is neces-
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sary and sufficient that X be a wM-space which has a G,(2)-diagonal.

This theorem could be deduced from the following metrization
theorem.

Theorem 2.3. In order that o T, space X be metrizable it is
necessary ond sufficient that there exists a sequence {U,} of open
coverings of X such that {St¥(x,%,)|n=1,2...} is a basis for neigh-
borhoods at each point x of X.

Theorem 2.8 is essentially due to K. Morita [8, Theorem 4], and
afterwards it is also proved by A. H. Stone [12, Theorem 1] and
A. Arhangel’skii [1, Theorem 2]. But we shall give our proof for this
theorem based on [6, Theorem 2.4].

Proof of Theorem 2.3. Since the condition is trivially necessary,
we shall prove only the sufficiency of the condition. First we note
that X is Hausdorff. Indeed, for distinct points z, ¥, one of them,
say %, has a neighborhood St*(x, 2,) not containing y, which implies
St(z, A,) N St(y, A,)=0. Hence X is Hausdorff. We next show that
X is normal. Let A and B be closed subsets of X such that ANB=0,
and put

G,={St(z, A,) |z e A, St¥(z,¥,) NB=0},

for each . Then ACG,, BC\JH, and G,NH,=0, n=1,2, ---.
Since we may assume that {%,} is decreasing, we have also G,NH,,=0
for every m and n. Hence, if we put P=|JG, and Q=\JH,, then P
and @ are open subsets of X such that AcP, BCQ and PNQ=¢,
which shows that X is normal. On the other hand, X is clearly a
wM-space. Therefore by [6, Theorem 2.4] X is collectionwise normal.
Consequently X is metrizable by a theorem of R. H. Bing [2]. Thus
we complete the proof.

Proof of Theorem 2.2. The necessity of the condition is obvious.
To prove the sufficiency of the condition, let X be a wM-space with a
decreasing sequence {2(,} of open coverings of X satisfying (M,), and
suppose that X has a G,(2)-diagonal, that is, there exists a decreasing
sequence {&,} of open coverings of X such that for distinct points z,
¥ there exists some %, such that y e Sti(x,®B,). Then clearly X is
Hausdorff. Let us put ,=A,.NB,,n=1,2,.... Then, by the
similar way as in the proof of Theorem 2.1, it is proved that {St*(x, 28,)
|n=1,2, ...} is a basis for neighborhoods at each point z of X.
Hence, by Theorem 2.3, X is metrizable. Thus we complete the proof.

From Theorem 2.1 (or 2.2), we can easily deduce a metrization
theorem of A. Okuyama [10] and C. Borges [3]. In Theorems 2.1 and
2.2, we don’t know whether a G,(1)-diagonal and a G,(2)-diagonal are
replaced by a G,(1)-diagonal and a G,(2)-diagonal, respectively.
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The following theorem is a consequence of a theorem of A. Oku-
yama [11, Theorem 3.6].

Theorem 2.4. In order that a space X be a metrizable it is
necessary and sufficient that X be a normal Hausdorff wM-space with
a o-locally finite net.”

Proof. The necessity of the condition is obvious. To prove the
sufficiency of the condition, let X be a normal Hausdorff wM-space
with a g-locally finite net. Then by [6, Theorem 2.4] X is collection-
wise normal. Further, as is shown by A. Okuyama [11], every
collectionwise normal Hausdorff space with a o¢-locally finite net is
paracompact. Since every paracompact Hausdorff wM-space is an
M-space, the theorem immediately follows from a theorem of A. Oku-
yvama [11, Theorem 3.6]. Thus we complete the proof.

Finally, we shall state a metrization theorem based on symmetric
neighborhoods.

Theorem 2.5. In order that a T, space X be metrizable it is
necessary and sufficient that each point x of X has a sequence {U, (x)
In=1,2, - ..} of symmetric neighborhoods such that {U%(x) |n=1,2, - - -}
18 a basis of neighborhoods at x.

This theorem is easily proved by a theorem of J. Nagata [9,
Theorem 1], but is also proved by Theorem 2.3 as follows:

Proof of Theorem 2.5. The necessity of the condition is obvious.
To prove the sufficiency of the condition, suppose that each point « of
a T, space X has a sequence {U,(x)} of symmetric neighborhoods such
that {U%(«)} is a basis for neighborhoods at x, where we may assume
that {U,(x)} is decreasing at each point x. Then it is proved that
{Ui4(x)} is a Dbasis for neighborhoods at each point x of X. Indeed,
for given n and x, we can take p, ¢ and r such that p>qg>r>n,
U(x)cU,(x), UNx)c U, (), and Ui(x)CU,x). Then clearly Uj,(x)
c U,(x), and hence {U%(x)} is a basis for neighborhoods at each point
. Now let us put %, ={Int U,(x) |z ¢ X}, n=1,2, - ... Then St*(z, A,)
cUi(x) for each » and x. Consequently by Theorem 2.3 X is
metrizable.

Remark. K. Morita pointed out in Zbl., 78, p. 361 (1958) that
Nagata’s theorem [9, Theorem 1] is easily proved by his metrization
theorem [8, Theorem 4].

3. wM.spaces and M.spaces.

A wM-space X is not an M-space in general. Hence it is signifi-
cant to study a problem under what conditions a wlM-space X is an

1) The notion of net was introduced by A. Arhangel’skii in ‘“An addition
theorem for the weight of spaces lying compacta, Dokl. Akad. Nauk SSSR, 126,
239-241 (1959)"’.
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M-space. If X is an M-space, then there exists a normal sequence
{%,} of open coverings of X satisfying (M,), and hence the followings
are valid.

1) {%,} satisfies (M,).

2 NSt(x, A,)=St(x, A,) for each point z of X.

Conversely, we can prove the following

Theorem 3.1. Let X be a wM-space with a decreasing sequence
{2,} of open coverings of X satisfying (M,). If NSt*(x,A,)=MNSt(x, A,)
for each point x of X, then X is an M-space.

We shall prove Theorem 3.1 by the similar way as in the proof
of [7, Theorem 6.1]. Before proving the theorem, we mention a
lemma.

Lemma 3.2. Let X be a wM-space with a decreasing sequence
{A,} of open coverings of X satisfying (M,). If MSti(wx, A,)=NSt(z, A,)
for each point x of X, then for each k {St*(x, %,)|n=1,2, ---}is a basis
for neighborhoods of (MSt(x, As).

Proof. We prove the lemma by induction for k. For simplicity,
we put C(x) =M\St(x, %,). Now suppose that "\Sti(x, A,)=C(x). Then
it is easily proved that {Sti(x, %,)|n=1,2, - - .} is a basis for neighbor-
hoods of C(x). Next, suppose that {St*(x, %,)|n=1,2, ...} is a basis
for neighborhoods of C(x) for some k>2. Then for any open subset
U of X such that C(x)c U there exist some m, n such that m>n,
St¥(x, A,)c U and Str(x, A,,) CSt(x, A,). Hence it follows that St*+(x,
A, ) U. Thus we complete the proof.

Proof of Theorem 3.1. Suppose that MSt*(x, A,)=C(x) where
C(x)=NSt(x, ¥,). Then by Lemma 3.2 {St*(z, ¥,)|n=1,2,---} is a
basis for neighborhoods of C(x), and hence for given n and x there
exists some m such that St(x, %,)cSt(x, A,). This shows that we
can take {St(z, %,)|n=1,2, .--} as a basis for neighborhoods at each
point # of X. We denote by (X, %) the space X with this new topology.
For any subset A of X, let us put

Int(4 ; M) ={x|St(x, A,)C A for some n}.
Then Int(A; %) is open in (X,%). Now we shall define that two
points & and y are equivalent, i.e., z~y, if ye C(x). Then it is
obvious that #~« and that x ~y implies y~x. To prove transitivity
of this relation, let x~y and y~z. Then from y e C(x) and z e C(y)
it follows that z ¢ St¥(x, %) for every n, and hence we obtain z ¢ C(x),
i.e., z~2. Let X/%U be a quotient space obtained from (X, %) by this
equivalent relation, and let ¢ be a quotient map of (X, %) onto X/9.
Then we have
o (p(Int(4 ; M) =Int(4 ; %N).

Hence ¢ is an open continuous map of (X, %) onto X/A. We denote
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by 4 an identity map of X onto (X,%). Then + is continuous. Let
us put f=¢oy, and T=X/U. Then we can prove that T is metrizable
and f: X—T is closed. Indeed, let us put
B, ={p(Int(St(z, A,); W) |z € X}, n=1,2, ...

Then clearly 8B,,n=1,2,..., are open coverings of 7. Further,
{St¥¢t,B,)|n=1,2, ...} is a basis for neighborhoods at each point ¢ of
T. 'To show this, let V be any open subset of T containing a point ¢,
and let x,€ ¢7'(t). Then C(z)=¢ '(t)C¢~(V), and hence by Lemma
3.2 there exists some %, such that St'(z, A)Ce (V). Since
¢ ' (Sti(t, B,)) < Sti(x,, A,), we obtain St*(t, B,)CV, which shows that
Sti(t, B,) | m=1,2, - - -}is a basis for neighborhoods at t. Consequently,
by Theorem 2.3, T is metrizable. To prove the closedness of f, let A
be any closed subset of X, and t,e f(4). Let z,e f'(t). Since
o(Int(St(x,, A,); W), n=1,2, ..., are open subsets of T containing ¢,
we have f(A)N p(Int(St(x,, A,); W)=x0 for every n, which shows that
ANSt(x, A,)x0 for every n. Let x,e ANSt(x,A,). Then the
sequence {xz,} has an accumulation point y which is contained in
ANC(x,). Hence we have t,=f(x)=f(y) e f(A). This shows that f
is closed. Finally it is obvious that f-!(¢) is countably compact for
each point ¢ of T. Therefore, by a theorem of K. Morita [7], X is an
M-space.
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