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Numerical Solution of an Unharmonic Oscillator
Eigenvalue Problem by Milne’s Method

By Hiroshi EZAWA,*) Koichi NAKAMURA,*)

and Yoshitaka YAMAMOT0**)

(Comm. by Takahiko YAMANOUCHI, M. J. A., Feb. 12, 1970)

In this note, we shall briefly report on our numerical solution1,

of the quantum mechanical eigenvalue problem,
,_(Un(X)=,nUn(X), (Un e L2(--c, c), n--0, 1, 2,...) ( 1 )

with the Hamiltonian,
d(- + V(x), V(x)- vx + x, ( 2
dx

where v is a parameter taking on either positive or negative values.
One recognizes immediately that perturbation approach from the
harmonic oscillator case cannot be useful even if there were a small
parameter in front of the term x; when < 0 the perturbation series
diverges! We have encountered the Hamiltonian (2) in our lattice
space formulation of the 2’ field theory," where the condition of
mass-renormalization requires a large positive v. The Hamiltonian
of the same type has been studied by many authors in connection with
the inversion vibration of NH molecule) and the hydrogen-bonded
solids; the 20-parameter variation calculation of Somorjai and Hornig)

is perhaps the most elaborate, but on the one hand the precision
they could obtain for eigenvalues was not high enough for our purpose
(see Table below) and on the other they did not give the matrix
elements due possibly to the limitation of the variation method.

2. In order to solve the eigenvalue problem (1), one normally
attempts to connect smoothly the two solutions of the differential
equation (d(--2)u(x)=0, one started from x= + c and the other from
x=-c (or from x= 0 when the potential V(x) is symmetric as ours is)
by choosing appropriate value for 2 on trial and error basis.

In our present problem, however, we have to determine the eigen-
values very accurately, in particular for the case of large v > 0 because,
due to the fact that the potential V(x) is W-shaped having two deep
valleys, the eigenvalue spectrum gets a doublet structure; the narrower
the spacing becomes the larger the one takes.

We used the method proposed by W. E. Milne) in 1930; it is best
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suited for our purpose because it provides us with a function N()that
has the following nice properties :--

(N1) It takes on integer values when and only when equals one
of the eigenvalues n. Moreover,

N(2n)--n/ 1, (n= 0, 1, 2, ). ( 3
(N2) It increases monotonically with 2.

Imagine how sensitive N(2) is to the small variation of 2 in the region
o the doublet spectrum!

3. Here, we shall present a brief account, of Milne’s method,
since the proof or (N1) and (N2) is not given in Milne’s paper.) Let
z(x 2)- v(x) + ivy(x) be a solution to the differential equation ((- 2)
z-0 satisfying the initial condition,

v(x)= and 4;(x)- at x-0, (4)
where the dot signifies d/dx and is the Kronecker symbol. We
assume generally that V(x) is such that at least one of the v’s diverges
"exponentially" as x-_+ c. Now, put the polar orm of z as

z(x; 2)-w(x 2) exp [i(x 2)], t?(0; 2)-0. ( 5
Obviously, z* gives another solution independent o z (* means complex
conjugate), the Wronskian being z’2-2" z-2i, which implies -w-,
or in other words,

O(x )=:w(x’ ,)-dx’. (6)

The function N(2) which we mentioned in the last section is then
defined as -x[t?(c 2)-t?(-c 2)], or

1 --dx’N(,)----- w(x’ ,) 7 )

In order to prove the property (N1), we put 2 equal to an eigen-
value 2 and write the general solution to the differential equation
((--,n)U 0 as

u(x; ,n)--W(X; 2n) sin [0(x 2)--a], ( 8 )
where a is an arbitrary real constant. Suppose that this is an eigen-
function, then one must have

U(-" 2n)-- 0. ( 9 )
But, w(+_ c 2)= c because, due to our assumption, one o the v’s
at least diverges exponentially as x--._+. Therefore, it is necessary
that 0(c; 2)-a=n= and 0(-c ]n)----nTr with n- integer or
zero. Eliminating a one finds

N(n)- integer. (10)
Conversely, i (10) is satisfied, then one can choose a such that

one has or x>0,

[sin [0(2; n)- 1] [’[ ’W(X’; 2)-dx’,

and at the same time a similar inequality for x<0. But,
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increases exponentially, say as x--+oo, so that

for sufficiently large x. With similar bound for x--oo, one can
conclude that

[u(x 2)1 < const, x/w(x 2), (11)
which guarantees the boundary condition (9). Thus the first half of
(N1) is established.

We note that (8) can be written as

u(x ,a,J--w(x ,,) sin [I:w(x’; ,)-"dx’], (12)

which tells us that the integer n in (3) is nothing but the number of
nodes u(X;2n) has in (-oo, oo). This proves the second half of (N1).
One sees from (12) that N(2/)>N(2) for 2/>2n, a special case of
(N2).

In order to prove (N2) for general 2, one starts with the derivative
of (6),

On the other hand, differentiation of cq(-2) z(x; 2)= 0 with respect to
gives a differential equation for 3z/3,, that is

(._q(- 2)[3z /a] z, (14)
which can be solved by the standard variation-of-constant method to
give

the parameter a in z(x;a) is suppressed. Now, substitute (15) into
(13), change the order of integration and finally carry out the x’-
integration by the help of the differential form of (6), i.e., dx’/w
=dO(x’;2), then one gets

30(x;02 2) I’odX"W(X"; 2) sin [0(x; )--0(x" )1, (16)

which leads immediately to (N2). This completes the proof.
4. In practice, the function N() can be constructed in the

following way. One uses Cq(-a)z-0 to obtain a differential equation
for w(; 2), that is"

dx
+,- V(x) w

w
The initial conditions are obtained from (4)"

w-1 and v)-0 at x-0. (17b)
Substituting the solution w into (7), one gets the function N().

5, We used IBM 360 (i) to solve (17) for trial values of R by the
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Milne method for the numerical solution of differential equation,) (ii)
to compute N() by Simpson’s 1/3-rule and (iii) to repeat interpolations
and extrapolations to find -- that satisfies (3) to the desired
precision. The results are summarized in Fig. 1. The following Table
gives a comparison of our results with Somorjai-Hornig’s. 3) Various
estimates of errors indicate that the last digits (printed in the smaller
letters) may involve errors at most +_ 5.

The calculation of matrix elements with the wave function (8) was
not so straightforward as one might expect, because a very small error
in could cause a very rapid rise of the tail of (8). We chose to tame

Table I

S-M’s Ours

4.436 4.436 86
4.349 --4.349 84
O. 022 O. 024 23
1.56 1.567 14
4.83 4.831 2
8.26 8.275
12.2 12.202
16.5 16.477
21.1

An example of the comparison between Somorjai-Hornig’s
(S-M’s) eigenvalues and ours. The last digits of our
eigenvalues may involve errors at most =t=5.

Fig. 1. The eigenvalues (full line) and their spacings
(dotted line). From the curves for 21-20 and
we can see how the doublet structure sets in.
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such tails by replacing them by the WKB asymptotes. Our results for
(mlxln) are shown in Fig. 2.

2.0

.5)

". ’’’

Pig’. 2. The matrix elements
eiensgages and . he braeke (,g), for
instance, means m=4,

We computed also the matrix elements, (mxln) and (mix’In),
which enabled us to check the degree of precision by using various
sum rules. Our matrix elements are thus roved to have three to five
signifiean figures.
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