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64. On Semi.inner Product Algebras*

By T. HUSAIN and B. D. lYIALVIYA
Department of lYlahematics, McMaster University, Hamilton, Canada

(Comm. by Kinjir8 KUNUGI, M. J. A., March 12, 1970)

1. Introduction. R. Keown [5] introduced some new classes of
commutative Hilbert algebras which is some sense are generalizations
of the algebras studied by W. Ambrose [1]. The essential difference
between the works of Keown and Ambrose is that the latter doe not
obtain the decomposition of the algebra into orthogonal subspaces each
of which is a minimal left ideal. The present authors [4] generalized
the work of Ambrose by replacing the underlying Hilbert space
structure by a more general space called the semi-inner product space,
a concept introduced by G. Lumer [6]. The purpose of this note is to
extend some of Keown’s results to semi-inner product spaces (hence-
forth abbreviated to s.i.p, spaces). For example, we show that for
any generalized s.i.p, algebra A and for an idempotent e, eAe is a
division algebra. For definitions we follow Keown [5] and Husain [2].

2. We recall some of the definitions from [4] and [6].
A complex (real) vector space X is called a complex (real) s.i.p.

space if corresponding to any pair of elements x, y e X, there is defined
a complex (real) number [x, y] which satisfies the following properties"

( i ) Ix + y, z] [x, z] + [y, z],
[2x, y]-- 2[x, y] for x, y, z e X, 2 is complex or real,

(ii) [x, x]>0 for x0,
(iii) I[x, y]l<_ [x, x][y, y].
We put Ilxll=[x, x] and thus X is a normed space. However an

s.i.p, space need not satisfy the following properties"

(iv) [x, y] =[x, y],
(iv)’ [x, y] [y, x]
(v) [x, y+ z] Ix, y] + Ix, z].
A s.i.p. X space is said to be continuous if

Re {[y, x + 2y]}--.Re {[y, x]} for all real 2-0,
and any x, y e X. In a s.i.p, space X, an element x e X is said to be
orthogonal to y e X if [y,x]=0. A s.i.p, space is said to be strictly
convex if llx+yll=llxll+llyll implies y=2x, >0. An s.i.p, space
which is also a Banach algebra is said to be a generalized s.i.p, algebra.
A generalized s.i.p, algebra A is said to be regular if corresponding
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to every maximal modular ideal R of A, there is an ideal I such that
A-R/I. A generalized s.i.p, algebra is said to be proper if it
contains non-zero annihilators. An idempotent e is said to be
primitive, if e can not be expressed as e--e /e, where 0:/:e, e are
idempotents. A generalized s.i.p, algebra A is said to be ad]oint if
there exist binary operations f" (x, y)--.xy and f*" (x, y)x.y such
that (xy, z)-(y, x*. z), for any x, y, z e A.

The following lemmas from [3] are needed in the sequel. We quote
them here without proofs.

Lemma 1. Let X be a complete and continuous s.i.p, space which
satisfies the inequality u+ v + [ u-v [[ <_ 2 u [[ + 2 v , (0</< 1),
for all u, v e X, then there is a non-zero vector orthogonal to a closed
proper subspace Y of X and any x e X can be expressed in the form"
x-y+ z, where y belongs to Y and Z is orthogonal to Y.

Lemma 2. In a continuous s.i.p, space X which is complete with
respect to its norm and in addition the norm satisfies the inequality"

Ilu+ vll+/llu-vll_<21lull+211v , (0</1), every continuous linear

functional f defined on X can be represented by f(x)=[x, y], where y
is unique.

Lemma 3. In the case of weak convergence with respect to the
second argument of the semi-inner product the weak limit is unique if
the s.i.p, space is strictly convex.

A less general form of result contained in Husain and Malviya [4]
is also needed in the sequel, in Lemmas 4 and 5 below, the generalized
proper s.i.p, algebra A has the involution * defined by [xy, z]- [y, x*. z],
where x, y,z e A. In addition the involution is taken to satisfy the
condition" (ax + fly)=x*+ y*, where a,/ are scalars. We also
assume that the norm in the s.i.p, space satisfies the inequality"

u+ v II-+/l[u-vll<_211ull+2llvl[,
Lemma 4. A generalized s.i.p, algebra A with involution

satisfying the conditions above, contains primitive idempotents.
Lemma 5. In a generalized s.i.p, algebra A with involution

defined as above and satisfying the condition [x, y]-[y*, x*] for any
x, y e A the right ideal R--eA is minimal if and only if e is a primitive
idempotent. (The same is true for left ideal also:)

:. As in Keown [5] we take all the algebras to be commutative
and semi-simple in the sequel. Furthermore we assume that the norm
in the s.i.p, space (complete and continuous) satisfies the inequality

Lemma 1 can be used to adopt Keown’s proof of (c" [5], Lemma
2.1) of the following result for the Hilbert regular algebras to
generalized s.i.p, regular algebras with appropriate changes.
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Lemma 5. Every maximal modular ideal R of a generalized s.i.p.
regular algebra A has associated with it a unique minimal idempotent
e and a unique multiplicative element g. An element x e A is in R iff
either ex--O or [x, g]=O. For any x, y e A, [xy, g]-[x, g][y, g].

First we show that under the topology induced by the multiplica-
tive linear functionals on a generalized s.i.p, regular algebra, the
algebra is a topological algebra. More precisely, we prove the
ollowing:

Proposition 1. With respect to the topology induced by the
multiplicative linear functionals, the generalized s.i.p, regular algebra
A is a topological algebra.

Proof. The topology is generated by taking the collection of all
subsets of A of the orm {x f(x-- Xo)l< , Xo e A, i= 1, 2, ..., n} as an
open sub-basis or the topology on A where f’s are the multiplicative
linear functionals (as obtained in Lemma 6 by putting f(x)-[x, g])
defined over A. It is easy to check that (x, y)-.x/y and (, x)-x
are continuous with respect to this topology. To show that (x, y)-.xy
is continuous under this topology, let x0, Yo e A, f(xy-Xoyo)-f(x(y-Yo)
/ (x- x0)Y0} f(x)f(y- Yo) / f(x- Xo)f(yo). Consider a sub-basic
neighbourhood of XoYo defined by {z: f(Z-XoYo)le,i-l,2,...,n}.
For >0, let x e (p: If(p-Xo)l<} and y e (q: If(q-Yo)]<}. We have

/ ]f(Yo) <_ e, provided we choose small enough. Thus xy e {z: [f(z

In view of Lemma 3.1 ([5]), thefollowing is clear:
Lemma 7. The orthogonal complement of a standard (ad]oint)

ideal I of the ad]oint algebra A is an ad]oint (standard) ideal J of A
provided that the s.i.p, space has the property (v) in 2.

Lemma 8. A generalized s.i.p, ad]oint algebra A is regular under
the standard and ad]oint products separately provided the s.i.p, space
satisfies the property (v) in 2.

Proof. Let R be a standard maximal modular ideal of A. Then
by Lemma 1, A--R+ J (orthogonal sum). Also by Lemma 7, J is an
adjoint ideal. Now the proof is completed by ollowing Keown ([5],
Lemma 3.2).

Lemma 9. In a finite dimensional generalized s.i.p, ad]oint
algebra the standard (ad]oint) socle is dense in A.

The proof is the same as in Keown ([5] Lemma 3.3). The finite
dimensionality is needed to ensure the denumerability o the minimal
idempotents in the generalized s.i.p, adjoint algebra.

Proposition 2. Let A be a finite dimensional generalized s.i.p.
ad]oint algebra and * an involution, then [x, y]=[y*,x*], assuming
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that the s.i.p, space satisfies the property (iv) in 2 and the strong
convergence of a sequence from the socle implies weak convergence
with respect to the second argument of the semi-inner product.

Proof. We have for x e A and any minimal idempotent e, [e, x]
--[e,x]--[e, e. x]--[ex*, e*] Ix*, e*.e*]--[x*, e*], since (xy)*=y*. x*.
Now consider the element z of the socle, then z=2e+2e+...
/2e and let y be any other element of A. Then by (iv) in 2 and
the above relation we have [Zn, Y] [Y*, Z* ]. Taking y=z, we have
IIz[I IIz*ll. This implies the continuity of involution, The continuity
o the involution in essence means that zozz*--,z*. Now we have
lim [z, y]-lim [y*, z*] or [z, y]-lim [y*, z*]. But since the s.i.p, space
satisfies the inequality u/ v // u--v <_ 2 u / 2 v , this implies
that the space is uniformly convex and hence also strictly convex.
Hence by Lemmas 3 and 9; and using the fact that socle is dense, the
result follows.

From the definition it is clear that (xy)*-y*.x*-x*.y*. In
addition we assume that involution in A satisfies (qx / fly)*-x* + fly*
(, fl are scalars), since this does not ollow from the definition of *
in the s.i.p, space because of the lack of linearly in the second
argument. We now prove the ollowing proposition"

Proposition :. In a generalized proper s.i.p, ad]oin$ algebra A,
eAe is a division algebra where e is an idempotent, assuming that A
satisfies the conditions of Proposition 2.

Proof. From Lemma 4, it is seen that e is primitive. By Lemma
5, Ae is a minimal ideal. Let 0:/:x e A, then exe eAe. Now Aexe
cAe. Since AexeO, hence Aexe=Ae. Again eeAeeeAexe.
Hence for some y A, yexe- e. Then (eye)(exe)- e. Let z- exe eye,
then z--z. Also z:/:0, for if (exe)(eye)--O then O--(exe)(eye)(exe)
=(exe)e-exe:/:O. This shows that z is an idempotent in eAe. Since
e is primitive, it is the only idempotent in eAe, therefore z=e. Thus
every non-zero element of eAe has an inverse and eAe is a division
algebra.
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