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64. On Semi-inner Product Algebras®

By T. HUSAIN and B. D. MALVIYA
Department of Mathematics, McMaster University, Hamilton, Canada

(Comm. by Kinjird KUNUGI, M. J. A., March 12, 1970)

1. Introduction. R. Keown [5] introduced some new classes of
commutative Hilbert algebras which is some sense are generalizations
of the algebras studied by W. Ambrose [1]. The essential difference
between the works of Keown and Ambrose is that the latter doe not
obtain the decomposition of the algebra into orthogonal subspaces each
of which is a minimal left ideal. The present authors [4] generalized
the work of Ambrose by replacing the underlying Hilbert space
structure by a more general space called the semi-inner product space,
a concept introduced by G. Lumer [6]. The purpose of this note is to
extend some of Keown’s results to semi-inner product spaces (hence-
forth abbreviated to s.i.p. spaces). For example, we show that for
any generalized s.i.p. algebra A and for an idempotent e, ede is a
division algebra. For definitions we follow Keown [5] and Husain [2].

2. We recall some of the definitions from [4] and [6].

A complex (real) vector space X is called a complex (real) s.i.p.
space if corresponding to any pair of elements «, y € X, there is defined
a complex (real) number [z, ¥] which satisfies the following properties:

(1) [z+y,2l=[=, 214y, 2],

[Ax, y1=Alz, y] for x,y,z e X, 4 is complex or real,

(ii) [z, 2]1>0 for x+0,

(i) |[=, y1F <[z, 21ly, y].

We put ||z|| =[x, ]"* and thus X is a normed space. However an
8.i.p. space need not satisfy the following properties:

(iV) [x’ zy] =§[wy y]’

(iv) [=,yl=ly,x]

(v) [z, y+zl=Iz, yl+Iz, 2.

A s.i.p. X space is said to be continuous if

Re {[y, x+ Ayl}—Re {[y, «]} for all real 1—0,
and any z,ye X. In as.i.p. space X, an element x ¢ X is said to be
orthogonal to y ¢ X if [y, x]1=0. A s.i.p. space is said to be strictly
convex if |z+y||=|x|+]|y| implies y=Ax, 4>0. An s.i.p. space
which is also a Banach algebra is said to be a generalized s.i.p. algebra.
A generalized s.i.p. algebra A is said to be regular if corresponding
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to every maximal modular ideal R of A, there is an ideal I such that
A=R+1. A generalized s.i.p. algebra is said to be proper if it
containg non-zero annihilators. An idempotent ¢ is said to be
primitive, if e can not be expressed as e=e,+e,, where O+ey, e, are
idempotents. A generalized s.i.p. algebra A is said to be adjoint if
there exist binary operations f: (z,y)—xy and f*: (z,y)—x -y such
that (zy, 2)=(y, x*-2), for any z,¥y,2c A.

The following lemmas from [3] are needed in the sequel. We quote
them here without proofs.

Lemma 1. Let X be a complete and continuous s.i.p. space which
satisfies the inequality ||u+v|*+ p?|lu—v|P<L2||u|?+2]v|F, 0<p<]),
for all w,v e X, then there is a non-zero vector orthogonal to a closed
proper subspace Y of X and any x € X can be expressed in the form:
x=y+%, where y belongs to Y and Z is orthogonal to Y.

Lemma 2. In a continuous s.i.p. space X which is complete with
respect to its norm and in addition the norm satisfies the inequality:
lu+v|P+ 2| u—v|P<L2]|ulP+2|v |5 (0<u<1), every continuous linear
functional f defined on X can be represented by f(x)=I[x,y], where y
18 unique.

Lemma 3. In the case of weak convergence with respect to the
second argument of the semi-inner product the weak limit is unique if
the s.i.p. space is strictly convex.

A less general form of result contained in Husain and Malviya [4]
is also needed in the sequel. In Lemmas 4 and 5 below, the generalized
proper s.i.p. algebra A has the involution * defined by [xy, 21=1[y, *-z],
where «,y,2¢ A. In addition the involution is taken to satisfy the
condition: (ax+ ,8y)=o’2x*+By*, where a, 8 are scalars. We also
assume that the norm in the s.i.p. space satisfies the inequality :

lutoP+ g2 u—v|P<2]|u|+2]v]F, 0<p<1.

Lemma 4. A generalized s.i.p. algebra A with involution
satisfying the conditions above, contains primitive idempotents.

Lemma 5. In a generalized s.i.p. algebra A with involution
defined as above and satisfying the condition [z, yl=I[y*, x*] for any
xz,y € A; the right ideal R=eA is minimal if and only if e is a primitive
idempotent. (The same is true for left ideal also.)

3. As in Keown [5] we take all the algebras to be commutative
and semi-simple in the sequel. Furthermore we assume that the norm
in the s.i.p. space (complete and continuous) satisfies the inequality

lutolf+ gllu—vP<2|ulf+2]vff,  O<p<D).

Lemma 1 can be used to adopt Keown’s proof of (cf: [5], Lemma
2.1) of the following result for the Hilbert regular algebras to
generalized s.i.p. regular algebras with appropriate changes.
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Lemma 6. Every maximal modular ideal R of a generalized s.1.p.
regular algebra A has associated with it o unique minimal idempotent
e and a unique multiplicative element g. An element xe A is in R iff
either ex=0 or [z, 9]1=0. For any x,yc A, [xy, 9]=I[z, glly, g].

First we show that under the topology induced by the multiplica-
tive linear functionals on a generalized s.i.p. regular algebra, the
algebra is a topological algebra. More precisely, we prove the
following:

Proposition 1. With respect to the topology induced by the
multiplicative linear functionals, the generalized s.i.p. regular algebra
A is a topological algebra.

Proof. The topology is generated by taking the collection of all
subsets of A of the form {z:| fi(x—2)|<e,2 € A4,1=1,2,-..,n} as an
open sub-basis for the topology on A where f;’s are the multiplicative
linear functionals (as obtained in Lemma 6 by putting f(x)=Ix, g])
defined over A. It is easy to check that (x,y)—x4+y and (1, x)—Ax
are continuous with respect to this topology. To show that (x, ¥)—zy
is continuous under this topology, let x,, ¥, € A, fi(xy —xy) = f{x(y—yo)
+ @ —2)Yo} = fl@) [ (y—Y) + flx—x) fi(y,). Consider a sub-basic
neighbourhood of z,y, defined by {z:|f.(z—xwy)|<e,i=1,2,...,n}.
For 6>0,letx e {p:|flp—=x)|<0} and y e {g: |filg—¥,)|<d}. Wehave
|fi@)|<Ifi@—2) |+ fi(@) | <O +[fx)].  So |ful@y—aye)|<{0+|fx)}0
+0|fi(¥y)| <e, provided we choose ¢ small enough. Thus 2y e {z: |fi(2
— oY) | < e}l ;

In view of Lemma 3.1 ([5]), the following is clear:

Lemma 7. The orthogonal complement of a standard (adjoint)
ideal I of the adjoint algebra A is an adjoint (standard) ideal J of A
provided that the s.i.p. space has the property (v) in § 2.

Lemma 8. A generalized s.i.p. adjoint algebra A is regular under
the standard and adjoint products separately provided the s.i.p. space
satisfies the property (v) in § 2.

Proof. Let R be a standard maximal modular ideal of A. Then
by Lemma 1, A=R+J (orthogonal sum). Also by Lemma 7, J is an
adjoint ideal. Now the proof is completed by following Keown ([5],
Lemma 3.2).

Lemma 9. In a finite dimensional generalized s.i.p. adjoint
algebra the standard (adjoint) socle is dense in A.

The proof is the same as in Keown ([6] Lemma 3.8). The finite
dimensionality is needed to ensure the denumerability of the minimal
idempotents in the generalized s.i.p. adjoint algebra.

Proposition 2. Let A be a finite dimensional generalized s.i.p.
adjoint algebra and * an involution, then [x,yl=I[y*, €*], assuming
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that the s.i.p. space satisfies the property (iv) in §2 and the strong
convergence of a sequence from the socle implies weak convergence
with respect to the second argument of the semi-inner product.

Proof. We have for £ ¢ A and any minimal idempotent e¢;, [e;, x]
=[e3, x]=le,, e¥ x]=I[e,x*, eX]=[x*, e} . e¥]1=[x*, e}], since (xy)* =y*. x*.
Now consider the element z, of the socle, then z,=21,e,+4.e,+ -+
+2,¢,; and let ¥ be any other element of A. Then by (iv) in §2 and
the above relation we have [z,, yl=I[y*, 2*¥]. Taking y==z,, we have
Izzll=112¥||. This implies the continuity of involution. The continuity
of the involution in essence means that z,—z=>z*—z*. Now we have
lim [z,, y]=1im [y*, z*] or [z, y]=lim [y*, z¥]. But since the s.i.p. space
satisfies the inequality |[u+v|2+ p?||u—v|F < 2| %|?+2||v|?, this implies
that the space is uniformly convex and hence also strictly convex.
Hence by Lemmas 3 and 9; and using the fact that socle is dense, the
result follows.

From the definition it is clear that (xy)*=y*.x*=a*.y*. In
addition we assume that involution in A satisfies (ax+ By)* =az* + By*
(a, B are scalars), since this does not follow from the definition of *
in the s.i.p. space because of the lack of linearly in the second
argument. We now prove the following proposition:

Proposition 3. In a generalized proper s.i.p. adjoint algebra A,
eAe is a division algebra where e is an idempotent, assuming that A
satisfies the conditions of Proposition 2.

Proof. From Lemma 4, it is seen that e is primitive. By Lemma
5, Ae is a minimal ideal. Let 0#£xc 4, then execede. Now Aexe
CAe. Since Aexes+0, hence Aexe=Ae. Again ec Ae=>ec Aexe.
Hence for some y € A, yexe=e. Then (eye)(exe)=e. Let z=exe eye,
then 22=z. Also 20, for if (exe)(eye)=0 then 0=(exe)(eye)(exe)
=(exe)e=exe+0. This shows that 2z is an idempotent in eAe. Since
e is primitive, it is the only idempotent in eAe, therefore z=e. Thus
every non-zero element of eAe has an inverse and ede is a division
algebra.
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