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Introduction. Let X be a complex Hilbert space with inner
product (., .) and norm I1" I]. Let L be a selfadjoint (in general un-
bounded) operator on X satisfying
( 1 ) (Lf, f) >_ 0 for all f e .q)(L),
where .q)(L) denotes the domain of L. We shall consider abstract
"hyperbolic" equations of the form

( 2 ) 1-[ [+ ooL]u(t)--O (t e R1)

(3t-d/dt) with initial data
( 3 ) i--iu]tfO---(ij e _,dD(L(2m-y+l)/2), ]--1, 2,-.., 2m,
where m is a positive integer and are positive constants such that
(4) 0<<2<’" <.

In Mizohata [2], we know that there exists a unique solution of
(2), (3) in the class C](_q)(L(-)/*))) ([2]; Theorem 5.1). In this

0j2m

note, we shall obtain an asymptotic property as tc of the solution
under the assumption that the spectrum o L is strongly absolutely
continuous with respect to the Lebesgue measure. As will be seen,
we shall generalize recent results of Shinbrot [4] and Goldstein [1], in
which are treated the case of abstract wave equations (i.e., when
m=l in (2)).

First we consider the case when the origin 0 is in the resolvent set
of L. In this case, applying the method developed by Mizohata [2],
we can construct the explicit formula of the strongly continuous group

2m

{T; t e R} of unitary operators in the space l-[ -q)(L(-)/9 which assign

to given initial data (, , ...,) the data of corresponding solution
of (2) at time t. For the general case, let L L + 2n-L / n-I.
Then, by the limit procedure developed by Goldstein [1], we can deduce
the general case from the special case that L is invertible.

1. Assume first that there exists a positive constant c such that
( 5 ) (Lf, f) >_ c[Ifil for all f e .q)(L).

1) u(t)e {(X) means that u(t) is times continuously differentiable in t with
values in X.
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We put H-L1/2. Then for each ]>_0 integer, .q)(H0 is a linear sub-
space of X, and we have
( 6 ) I]Hfll >_ /-llfl[ for all f e .q)(H).

Equation (2) can be written in the form
( 7 ) 3u+ flL3’-u+... +Lu=O.
We put
( 8 ) u=u, u-Ou, ..., u.=O’-u.
Then it follows rom (7) that

ul - 0 1 ul

3t u2 | 0 1 u2

"]=_ :::::::::::::::::::::::::"::(} 1

flL 0 --/_ln- 0 flL 0 u
We write this simply as
( 9 ) 3tU(t)=AU(t), U=t(u, u, u).)

This equation will be considered as a differential equation in the space
2m

(H-) (H-) -q)(H) V[ -q)(H-0, where the domain o
2m =I

A is given as (A)= VI -q)(H-/)
We put X-_q)(H0 (X0=X). Then each X orms a Hilbert space

with norm

Thus, in I-I x_ is defined the naturally induced norm

[].FI[-- fj I[.- F-t(fl, fi., f2).
However, we define another norm (energy norm) in,this space (cf.,
Mizohata [2]).

We introduce the matrix

(10) E(H)

H

E(H) maps 1-I X_ one-to-one onto X, and it follows that
j=l

(11) E(H)A-PHE(H),
where

0 1
0 1

P= ................:::::::::::::::::::::::::::: 1
o o o

Since the equation det[TI-P]=O has the distinct roots T=___/
2) If M is matrix, tM denotes the transpose of M.
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(]=1,2,...,m) by (4), there exists a non-singular matrix N--(nD
such that
(12) NP=iDN (i= /-- 1 ),
where

We introduce the following notation"
(13) 7_--- +i/ and ’v---i/c (]-1, 2, ..., m).
Then N- is given as follows"

1 1 1

N-= ? ? .?.

Now we define in the space X_ the following new inner

product
(F, (NE(H)F, NE(H)G)

nH-f, nH’-g=
the Hilbert space with inner product (.,.) and norm [[. [.

Theorem 1. The operator A, with domain (A)= (HZ-+),
is skew selfad]oint in

Proof. From (11) and (12), it follows that
(14) (AF, G)
for any F e (A) and G e . Note that E(H)=X and E(H)(A)
=((H)). Then since DH is selfadjoint in Xz with domain ((H))z,
we see from (14) that A*=-A. q.e.d.

It now follows that A generates a strongly continuous group
{T,=ea* t e R} of unitary operator in with the following properties"

( a ) TF is strongly differentiable in t if and only if F belongs to
(A), in which case
(15) 3tTF=AT,F,

(b) T, maps (A) onto (A) and commutes with A.
Suppose that F e (A), and denote the first component of T,F by

u(t). Then u(t)e (HZ)=(L) and the last component of relation
(15) gives

9pu=   _mL -X8 u
that is, u(t) satisfies equation (2).
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(17)

Lemma 2.

(18)

Then

(19)

From (14), it is not difficult to verify the following two lemmas.
Lemma 1. The ]-th component of TF(F e () is expressed as

[TF]- , (7)-’erm niH-f.
Let p be any integer such that pN2m, and let

F,y= nH-f

, nH-[TtF] --F, for all t e R1.

We can now prove the following theorem.
Theorem 2. Let L be a 8elfad]oint operator in X satisfying (5).

Suppose that the spectrum of L is strongly absolutely continuous with
respect to the Lebesgue measure. Then for any =t(, ,.. ",)
e(L) (L-/)... (L/), the solution u(t)-- [Tt] of (2), (3)
has the following asymptotic properties"

(20) lim]H-3[-u(t)]]- ]y](-)F, (]=1,2, ...,2m),

where H=L/ and p is any integer such that pK2m.
Proof. Let {E; a e R} and {E; a e R} be the resolutions of the

identity for L and H, respectively. Then since E=E for all
a e R =(0, ), aEf (f e X) is strongly absolutely continuous.

Put , nH Then noting (13) we have from (17)

H-3-u(t)= (iJ)-{em_,+(-1)-e-n,}.
Thus

IIH-Oi-u(t)l= ag-{ll-,ll+
=1

where

J(t)- 2Re (-1)-a{-(e’’_,, ,)

+2e (.a)-{(e’-"’_,, _,)
l=x <l

+(,, ee-vVn’wt,) + (-- 1)-(ev+v-V,_,
+ (-- 1) (,,

For any 0 real, ent is represented as

(21) (ernV, g)=.[er’td(Ef, g) for f, g e X.

Since the scalar measure dm(a)=d(Ef, g) is absolutely continuous, it
follows from the Riemann-Lebesgue theorem that (21), which is the
Fourier transform of din(a), tends ast to zero. Thus noting (4),
we deduce that lira J(t)-O. q.e.d.

Corollary 1. In (20), if we put p=]=l, then it follows that
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(20)’ imIlu(t) - F,= [IH-+II.
2. Next, for the general case, we can prove the following theo-

rem by the limit procedure (see Goldstein [1]).
Theorem 3. Let L be a selfadoint operator in X satisfying (1).

Then /or any =t(, , ...,) (L)(L(-)/) (L/:),
the initial value problem (2), (3) has a unique solution in the class

[((L(-)/) Let F ’-’ Then

n H-O-lu(t F(22) ,.
Moreover, if the spectrum of L is strongly absolutely continuous with
respect to the Lebesgue measure, then

2

(23) liml]U-Di-iu(t)]_ y](-l)r (]:1,2, 2m)2,k
t =1

Proof. Let L L + 2n-L/ + n-I, so that L H H + n-I
(n0 integer). Let u()(t) be the unique solution of (2) with L replaced
by L with initial data (3). Then as was shown previously

(23) 32-u() t( )-- (Y)-er’t ntS
= l=

Since
erHn ert/nergt

as n-.c, 3-u)(t) converges in X uniformly on compact intervals to
a necessarily strongly continuous function u(t)e (H) given by

(24) u(t)= (yg)-er nH-z.
=1 =1

Let us define the functions u(t) (]= 1, 2, ..., 2m-1) inductively as

(t) .()g+.
Then u(t)e (H-+) and asn

Ol-(t) 0()+(t)
uniformly on eomae inerals. By definition (t)=Ol-(t)(]=1,
,...,2m). urher since p e (H-*), i follows from () that
(t) is sronly continuously differeniable and

Since e (H) for all f e X and H -y(er’f--f}, it

is not difficult to see, by induction, that
2m 2m

(26) H-3-u(t)= (y)-e’ nH-=
and

2m 2m

(27)
=1 =1
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Now it follows from (25) and (27) that

L(-)u(t)u(t) + E

E {()+ ()(-)}e’ ntH-+
The right member is zero by (12). Hence u(t) defined above satisfies
(2) and (3). (22) follows immediately from (26). The uniqueness of
solutions is a consequence of (22) and linearity. (23) also follows rom
(26) by the same argument as in the proof o Theorem 2. q.e.d.

Corollary 2. In (23), i/ we put =1, then it/ollows that
2

(23)’ limlH-u(t)= E F
t

(References are listed at the end of the next article, pp. 271-272.)


