62. Asymptotic Property of Solutions of Some Higher Order Hyperbolic Equations. I

By Kiyoshi Mochizuki
Yoshida College, Kyoto University
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1970)

Introduction. Let X be a complex Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let L be a selfadjoint (in general unbounded) operator on X satisfying
(1) $\quad(L f, f) \geq 0 \quad$ for all $f \in \mathscr{D}(L)$,
where $\mathscr{D}(L)$ denotes the domain of L. We shall consider abstract "hyperbolic" equations of the form

$$
\begin{equation*}
\prod_{j=1}^{m}\left[\partial_{t}^{2}+\alpha_{j} L\right] u(t)=0\left(t \in \boldsymbol{R}^{1}\right) \tag{2}
\end{equation*}
$$

$\left(\partial_{t}=d / d t\right)$ with initial data
(3)

$$
\left.\partial_{t}^{j-1} u\right|_{t=0}=\varphi_{j} \in \mathscr{D}\left(L^{(2 m-j+1) / 2}\right), j=1,2, \cdots, 2 m
$$

where m is a positive integer and α_{j} are positive constants such that (4)

$$
0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}
$$

In Mizohata [2], we know that there exists a unique solution of (2), (3) in the class $\bigcap_{0 \leq j \leq 2 m} \mathcal{E}_{t}^{j}\left(\mathscr{D}\left(L^{(2 m-j) / 2}\right)\right)^{1)}$ ([2]; Theorem 5.1). In this note, we shall obtain an asymptotic property as $t \rightarrow \infty$ of the solution under the assumption that the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure. As will be seen, we shall generalize recent results of Shinbrot [4] and Goldstein [1], in which are treated the case of abstract wave equations (i.e., when $m=1$ in (2)).

First we consider the case when the origin 0 is in the resolvent set of L. In this case, applying the method developed by Mizohata [2], we can construct the explicit formula of the strongly continuous group $\left\{\boldsymbol{T}_{t} ; t \in \boldsymbol{R}^{1}\right\}$ of unitary operators in the space $\prod_{j=1}^{2 m} \mathscr{D}\left(L^{(2 m-j) / 2}\right)$ which assign to given initial data $\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{2 m}\right)$ the data of corresponding solution of (2) at time t. For the general case, let $L_{n}=L+2 n^{-1} L^{1 / 2}+n^{-2} I$. Then, by the limit procedure developed by Goldstein [1], we can deduce the general case from the special case that L is invertible.

1. Assume first that there exists a positive constant c such that (5)

$$
(L f, f) \geq c\|f\|^{2} \quad \text { for all } f \in \mathscr{D}(L)
$$

1) $u(t) \in \mathcal{E}_{t}^{j}(X)$ means that $u(t)$ is j times continuously differentiable in t with values in X.

We put $H=L^{1 / 2}$. Then for each $j \geq 0$ integer, $\mathscr{D}\left(H^{\jmath}\right)$ is a linear subspace of X, and we have

$$
\begin{equation*}
\|H f\| \geq \sqrt{c}\|f\| \quad \text { for all } f \in \mathscr{D}(H) \tag{6}
\end{equation*}
$$

Equation (2) can be written in the form
(7)

$$
\partial_{t}^{2 m} u+\beta_{1} L \partial_{t}^{2 m-2} u+\cdots+\beta_{m} L^{m} u=0 .
$$

We put
(8)

$$
u_{1}=u, u_{2}=\partial_{t} u, \cdots, u_{2 m}=\partial_{t}^{2 m-1} u .
$$

Then it follows from (7) that

$$
\partial_{t}\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{2 m}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 1 & & & \\
& 0 & 1 & & & \\
& & & & & \\
-\beta_{m} L^{m} & 0 & -\beta_{m-1} L^{m-1} & 0 & \cdots & -\beta_{1} L
\end{array}\right]\left[\begin{array}{c}
1
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{2 m}
\end{array}\right] .
$$

We write this simply as
(9) $\quad \partial_{t} U(t)=A U(t), \quad U==^{t}\left(u_{1}, u_{2}, \cdots, u_{2 m}\right) .^{2)}$

This equation will be considered as a differential equation in the space $\mathscr{D}\left(H^{2 m-1}\right) \times \mathscr{D}\left(H^{2 m-2}\right) \times \cdots \times \mathscr{D}\left(H^{0}\right)=\prod_{j=1}^{2 m} \mathscr{D}\left(H^{2 m-j}\right)$, where the domain of A is given as $\mathscr{D}(A)=\prod_{j=1}^{2 m} \mathscr{D}\left(H^{2 m-j+1}\right)$.

We put $X_{j}=\mathscr{D}\left(H^{j}\right)\left(X_{0}=X\right)$. Then each X_{j} forms a Hilbert space with norm

$$
\|f\|_{j}=\left\|H^{j} f\right\|, \quad f \in X_{j} .
$$

Thus, in $\prod_{j=1}^{2 m} X_{2 m-j}$ is defined the naturally induced norm

$$
\|\boldsymbol{F}\|_{\tilde{\mathcal{H}}}=\left[\sum_{j=1}^{2 m}\left\|f_{j}\right\|_{2 m-j}^{2}\right]^{1 / 2}, \quad \boldsymbol{F}={ }^{t}\left(f_{1}, f_{2}, \cdots, f_{2 m}\right) .
$$

However, we define another norm (energy norm) in this space (cf., Mizohata [2]).

We introduce the matrix

$$
E(H)=\left[\begin{array}{llll}
H^{2 m-1} & & & \tag{10}\\
& H^{2 m-2} & \\
& & \ddots & \\
& & & H^{0}
\end{array}\right]
$$

$E(H)$ maps $\prod_{j=1}^{2 m} X_{2 m-j}$ one-to-one onto $X^{2 m}$, and it follows that

$$
\begin{equation*}
E(H) A=P H E(H) \tag{11}
\end{equation*}
$$

where

Since the equation $\operatorname{det}[\gamma I-P]=0$ has the distinct roots $\gamma= \pm \sqrt{\alpha_{j}}$

[^0]$(j=1,2, \cdots, m)$ by (4), there exists a non-singular matrix $N=\left(n_{j k}\right)$ such that
(12)
$$
N P=i D N \quad(i=\sqrt{-1})
$$
where
\[

D=\left[$$
\begin{array}{llll}
+\sqrt{\alpha_{1}} & & & \\
& -\sqrt{\alpha_{1}} & & \\
& & \ddots & \\
& & +\sqrt{\alpha_{m}} & \\
& & & -\sqrt{\alpha_{m}}
\end{array}
$$\right]
\]

We introduce the following notation:

$$
\begin{equation*}
\gamma_{2 j-1}=+i \sqrt{\alpha_{j}} \text { and } \gamma_{2 j}=-i \sqrt{\alpha_{j}}(j=1,2, \cdots, m) \tag{13}
\end{equation*}
$$

Then N^{-1} is given as follows:

$$
N^{-1}=\left[\begin{array}{cccc}
1 & 1 & \cdots & \cdots \\
\gamma_{1} & \gamma_{2} & \cdots & \cdots
\end{array} \gamma_{2 m}\right]
$$

Now we define in the space $\prod_{j=1}^{2 m} X_{2 m-j}$ the following new inner product

$$
\begin{aligned}
(F, G)_{\mathscr{G}} & =(N E(H) F, N E(H) G)_{X^{2 m}} \\
& =\sum_{j=1}^{2 m}\left(\sum_{k=1}^{2 m} n_{j k} H^{2 m-k} f_{k}, \sum_{k=1}^{2 m} n_{j k} H^{2 m-k} g_{k}\right) .
\end{aligned}
$$

Then $\|F\|_{\mathscr{H}}=(F, F)_{\mathscr{A}}^{1 / 2}$ is equivalent to the $\tilde{\mathcal{H}}$-norm. We denote by \mathscr{H} the Hilbert space with inner product $(\cdot, \cdot)_{\mathscr{H}}$ and norm $\|\cdot\|_{\mathscr{H}}$.

Theorem 1. The operator A, with domain $\mathscr{D}(A)=\prod_{j=1}^{2 m} \mathscr{D}\left(H^{2 m-j+1}\right)$, is skew selfadjoint in \mathcal{H}.

Proof. From (11) and (12), it follows that
(14)
$(A F, G)_{\mathscr{H}}=(i D H N E(H) F, N E(H) G)_{X^{2 m}}$
for any $F \in \mathscr{D}(A)$ and $G \in \mathcal{H}$. Note that $E(H) \mathcal{H}=X^{2 m}$ and $E(H) \mathscr{D}(A)$ $=(\mathscr{D}(H))^{2 m}$. Then since $D H$ is selfadjoint in $X^{2 m}$ with domain $(\mathscr{D}(H))^{2 m}$, we see from (14) that $A^{*}=-A$.
q.e.d.

It now follows that A generates a strongly continuous group $\left\{T_{t}=e^{A t} ; t \in \boldsymbol{R}^{1}\right\}$ of unitary operator in \mathscr{A} with the following properties:
(a) $T_{t} F$ is strongly differentiable in t if and only if F belongs to $\mathscr{D}(A)$, in which case

$$
\begin{equation*}
\partial_{t} T_{t} F=A T_{t} F \tag{15}
\end{equation*}
$$

(b) $\quad T_{t}$ maps $\mathscr{D}(A)$ onto $\mathscr{D}(A)$ and commutes with A.

Suppose that $F \in \mathscr{D}(A)$, and denote the first component of $T_{t} F$ by $u(t)$. Then $u(t) \in \mathscr{D}\left(H^{2 m}\right)=\mathscr{D}\left(L^{m}\right)$ and the last component of relation (15) gives

$$
\begin{equation*}
\partial_{t}^{2 m} u=-\beta_{m} L^{m} u-\beta_{m-1} L^{m-1} \partial_{t}^{2} u-\cdots-\beta_{1} L \partial_{t}^{2(m-1)} u \tag{16}
\end{equation*}
$$

that is, $u(t)$ satisfies equation (2).

From (14), it is not difficult to verify the following two lemmas.
Lemma 1. The j-th component of $T_{t} F(F \in \mathcal{H})$ is expressed as

$$
\begin{equation*}
\left[T_{t} F\right]_{j}=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{j-1} e^{\tau_{k} H t} \sum_{l=1}^{2 m} n_{k l} H^{j-l} f_{l} \tag{17}
\end{equation*}
$$

Lemma 2. Let p be any integer such that $p \leq 2 m$, and let

$$
\begin{equation*}
\Gamma_{p, j}^{F}=\left\|\sum_{k=1}^{2 m} n_{j k} H^{p-k} f_{k}\right\|^{2} \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\sum_{k=1}^{2 m} n_{j k} H^{p-k}\left[T_{t} F\right]_{k}\right\|^{2}=\Gamma_{p, j}^{F} \quad \text { for all } t \in \boldsymbol{R}^{1} \tag{19}
\end{equation*}
$$

We can now prove the following theorem.
Theorem 2. Let L be a selfadjoint operator in X satisfying (5). Suppose that the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure. Then for any $\Phi={ }^{t}\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{2 m}\right)$ $\in \mathscr{D}\left(L^{m}\right) \times \mathscr{D}\left(L^{(2 m-1) / 2}\right) \times \cdots \times \mathscr{D}\left(L^{1 / 2}\right)$, the solution $u(t)=\left[T_{t} \Phi\right]_{1}$ of (2), (3) has the following asymptotic properties:

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|H^{p-j} \partial_{t}^{j-1} u(t)\right\|^{2}=\sum_{k=1}^{2 m}\left|\gamma_{k}\right|^{2(j-1)} \Gamma_{p, k}^{\oplus}(j=1,2, \cdots, 2 m) \tag{20}
\end{equation*}
$$

where $H=L^{1 / 2}$ and p is any integer such that $p \leq 2 m$.
Proof. Let $\left\{E_{\sigma}^{L} ; \sigma \in \boldsymbol{R}^{1}\right\}$ and $\left\{E_{\sigma}^{H} ; \sigma \in \boldsymbol{R}^{1}\right\}$ be the resolutions of the identity for L and H, respectively. Then since $E_{\sigma}^{H}=E_{\sigma^{2}}^{L}$ for all $\sigma \in R_{+}^{1}=(0, \infty), \sigma \rightarrow E_{\sigma}^{H} f(f \in X)$ is strongly absolutely continuous.

Put $\tilde{\varphi}_{j, p}=\sum_{k=1}^{2 m} n_{j k} H^{p-k} \varphi_{k}$. Then noting (13), we have from (17)
$H^{p-j} \partial_{t}^{j-1} u(t)=\sum_{k=1}^{m}\left(i \sqrt{\alpha_{k}}\right)^{j-1}\left\{e^{i \sqrt{\alpha_{k}} H t} \widetilde{\varphi}_{2 k-1, p}+(-1)^{j-1} e^{-i \sqrt{\alpha_{k}} H t} \widetilde{\varphi}_{2 k, p}\right\}$.
Thus

$$
\left\|H^{p-j} \partial_{t}^{j-1} u(t)\right\|^{2}=\sum_{k=1}^{m} \alpha_{k}^{j-1}\left\{\left\|\widetilde{\varphi}_{2 k-1, p}\right\|^{2}+\left\|\widetilde{\varphi}_{2 k, p}\right\|^{2}\right\}+J(t)
$$

where

$$
\begin{aligned}
J(t)= & 2 \operatorname{Re} \sum_{k=1}^{m}(-1)^{j-1} \alpha_{k}^{j-1}\left(e^{i 2 \sqrt{\alpha_{k}} H t} \widetilde{\varphi}_{2 k-1, p}, \widetilde{\varphi}_{2 k, p}\right) \\
& +2 \operatorname{Re} \sum_{l=1}^{m} \sum_{k<l}\left(\sqrt{\alpha_{k} \alpha_{l}}\right)^{j-1}\left\{\left(e^{i\left(\sqrt{\alpha_{k}}-\sqrt{\alpha_{l}}\right) H t} \widetilde{\varphi}_{2 k-1, p}, \widetilde{\varphi}_{2 l-1, p}\right)\right. \\
& +\left(\widetilde{\varphi}_{2 k, p}, e^{i\left(\sqrt{\alpha_{k}}\right.}-\sqrt{\alpha_{l}}\right) H t \\
& \left.\widetilde{\varphi}_{2 l, p}\right)+(-1)^{j-1}\left(e^{i\left(\sqrt{\alpha_{k}}+\sqrt{\alpha_{l}}\right) H t} \widetilde{\varphi}_{2 k-1, p}, \widetilde{\varphi}_{2 l, p}\right) \\
& \left.+(-1)^{j-1}\left(\tilde{\varphi}_{2 k, p}, e^{i\left(\sqrt{\bar{x}_{k}}+\sqrt{\alpha_{l}}\right) H t} \widetilde{\varphi}_{2 l-1, p}\right)\right\} .
\end{aligned}
$$

For any $\gamma \neq 0$ real, $e^{i_{r} t t}$ is represented as

$$
\begin{equation*}
\left(e^{i \gamma H t} f, g\right)=\int e^{i \tau_{r} t} d\left(E_{\sigma}^{H} f, g\right) \quad \text { for } f, g \in X \tag{21}
\end{equation*}
$$

Since the scalar measure $\operatorname{dm}(\sigma)=d\left(E_{\sigma}^{H} f, g\right)$ is absolutely continuous, it follows from the Riemann-Lebesgue theorem that (21), which is the Fourier transform of $\mathrm{dm}(\sigma)$, tends as $t \rightarrow \infty$ to zero. Thus noting (4), we deduce that $\lim _{t \rightarrow \infty} J(t)=0$.
q.e.d.

Corollary 1. In (20), if we put $p=j=1$, then it follows that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(t)\|^{2}=\sum_{k=1}^{2 m} \Gamma_{1, k}^{\Phi}=\left\|H^{-2 m+1} \Phi\right\|_{\mathscr{G}}^{2} . \tag{20}
\end{equation*}
$$

2. Next, for the general case, we can prove the following theorem by the limit procedure (see Goldstein [1]).

Theorem 3. Let L be a selfadjoint operator in X satisfying (1). Then for any $\Phi={ }^{t}\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{2 m}\right) \in \mathscr{D}\left(L^{m}\right) \times \mathscr{D}\left(L^{(2 m-1) / 2}\right) \times \cdots \times \mathscr{D}\left(L^{1 / 2}\right)$, the initial value problem (2),(3) has a unique solution in the class $\bigcap_{0 \leq j \leq 2 m} \mathcal{E}_{t}^{j}\left(\mathscr{D}\left(L^{(2 m-j) / 2}\right) . \quad\right.$ Let $\Gamma_{2 m, j}^{\Phi}=\left\|\sum_{k=1}^{2 m} n_{j k} H^{2 m-k} \varphi_{k}\right\|^{2}$. Then

$$
\begin{equation*}
\left\|\sum_{k=1}^{2 m} n_{j k} H^{2 m-k} \partial_{t}^{k-1} u(t)\right\|^{2}=\Gamma_{2 m, j}^{\Phi} \tag{22}
\end{equation*}
$$

Moreover, if the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|H^{2 m-j} \partial_{t}^{j-1} u(t)\right\|^{2}=\sum_{k=1}^{2 m}\left|\gamma_{k}\right|^{2(j-1)} \Gamma_{2 m, k}^{\oplus}(j=1,2, \cdots, 2 m) \tag{23}
\end{equation*}
$$

Proof. Let $L_{n}=L+2 n^{-1} L^{1 / 2}+n^{-2} I$, so that $L_{n}^{1 / 2} \equiv H_{n}=H+n^{-1} I$ ($n>0$ integer). Let $u^{(n)}(t)$ be the unique solution of (2) with L replaced by L_{n} with initial data (3). Then as was shown previously

$$
\begin{equation*}
\partial_{t}^{2 m-1} u^{(n)}(t)=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{2 m-1} e^{\gamma_{k} H_{n} t} \sum_{l=1}^{2 m} n_{k l} H_{n}^{2 m-l} \varphi_{l} \tag{23}
\end{equation*}
$$

Since

$$
e^{\tau_{k} H_{n} t}=e^{\gamma_{k} t / n} e^{\tau_{k} H t}
$$

as $n \rightarrow \infty, \partial_{t}^{2 m-1} u^{(n)}(t)$ converges in X uniformly on compact intervals to a necessarily strongly continuous function $u_{2 m}(t) \in \mathscr{D}(H)$ given by

$$
\begin{equation*}
u_{2 m}(t)=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{2 m-1} e^{\gamma_{k} H t} \sum_{l=1}^{2 m} n_{k l} H^{2 m-l} \varphi_{l} \tag{24}
\end{equation*}
$$

Let us define the functions $u_{j}(t)(j=1,2, \cdots, 2 m-1)$ inductively as

$$
u_{j}(t)=\int_{0}^{t} u_{j+1}(s) d s+\varphi_{j}
$$

Then $u_{j}(t) \in \mathscr{D}\left(H^{2 m-j+1}\right)$ and as $n \rightarrow \infty$

$$
\partial_{t}^{j-1} u^{(n)}(t)=\int_{0}^{t} \partial_{s}^{j} u^{(n)}(s) d s+\varphi_{j} \rightarrow u_{j}(t)
$$

uniformly on compact intervals. By definition $u_{j}(t)=\partial_{t}^{j-1} u_{1}(t)(j=1$, $2, \cdots, 2 m)$. Further since $\varphi_{j} \in \mathscr{D}\left(H^{2 m-j+1}\right)$, it follows from (24) that $u_{2 m}(t)$ is strongly continuously differentiable and

$$
\begin{equation*}
\partial_{t} u_{2 m}(t) \equiv \partial_{t}^{2 m} u_{1}(t)=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{2 m} e^{\gamma_{k} H t} \sum_{l=1}^{2 m} n_{k l} H^{2 m-l+1} \varphi_{l} \tag{25}
\end{equation*}
$$

Since $\int_{0}^{t} e^{r_{k} H s} f d s \in \mathscr{D}(H)$ for all $f \in X$ and $H \int_{0}^{t} e^{r_{k} H s} f d s=\gamma_{k}^{-1}\left\{e^{\tau_{k} H t} f-f\right\}$, it is not difficult to see, by induction, that
and

$$
\begin{equation*}
H^{2 m-j} \partial_{t}^{\jmath-1} u_{1}(t)=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{j-1} e^{r_{k} H t} \sum_{l=1}^{2 m} n_{k l} H^{2 m-l} \varphi_{l} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
H^{2 m-j+1} \partial_{t}^{j-1} u_{1}(t)=\sum_{k=1}^{2 m}\left(\gamma_{k}\right)^{j-1} e^{\tau_{k} H l} \sum_{l=1}^{2 m} n_{k l} H^{2 m-l+1} \varphi_{l} \tag{27}
\end{equation*}
$$

Now it follows from (25) and (27) that

$$
\begin{aligned}
& \partial_{t}^{2 m} u_{1}(t)+\sum_{j=1}^{m} \beta_{j} L^{j} \partial_{t}^{2(m-j)} u_{1}(t) \\
& \quad=\sum_{k=1}^{2 m}\left\{\left(\gamma_{k}\right)^{2 m}+\sum_{j=1}^{m} \beta_{j}\left(\gamma_{k}\right)^{2(m-j)}\right\} e^{\tau_{k} H t} \sum_{l=1}^{2 m} n_{k l} H^{2 m-l+1} \varphi_{l}
\end{aligned}
$$

The right member is zero by (12). Hence $u_{1}(t)$ defined above satisfies (2) and (3). (22) follows immediately from (26). The uniqueness of solutions is a consequence of (22) and linearity. (23) also follows from (26) by the same argument as in the proof of Theorem $2 . \quad$ q.e.d.

Corollary 2. In (23), if we put $j=1$, then it follows that
(23)'

$$
\lim _{t \rightarrow \infty}\left\|H^{2 m-1} u(t)\right\|^{2}=\sum_{k=1}^{2 m} \Gamma_{2 m, k}^{\Phi}=\|\Phi\|_{\mathscr{A}}^{2} .
$$

(References are listed at the end of the next article, pp. 271-272.)

[^0]: 2) If M is matrix, ${ }^{t} M$ denotes the transpose of M.
