51. A Generalization of the Riesz-Schauder Theory

By Akira Kaneko
(Comm. by Kunihiko Kodaira, M. J. A., March 12, 1970)

We prove the following:
Theorem. Let S be an analytic space and let $s \rightarrow K(s)$ be an analytic map of S into the ring of compact operators on a Banach space X. Then those points s of S for which $I+K(s)$ are not invertible form an analytic set in S.

This is a generalization of the following assertion, which is a part of the Riesz-Schauder theory.

Corollary 1. The spectrum of a compact operator is discrete.
Proof. We apply the theorem to $I+s K$ and find that those s for which $I+s K$ are non-invertible form an analytic set in the complex plane \boldsymbol{C}, namely, discrete set of points or \boldsymbol{C} itself. Because $I+s K$ is invertible when $s=0$, the latter case does not occur.

In the same way we can prove the following proposition which has applications in scattering theory.

Corollary 2. Let $K(s)$ be a family of compact operators depending analytically on a parameter sin an open subset U of the complex plane C. Then the set of all s for which $I+K(s)$ are non-invertible is either equal to U itself, or discrete in U.

Proof of the Theorem.
We use a method given by Donin [1].
Since the concept of analytic subset is local, it suffices to consider a neighborhood of a fixed point $s_{0} \in S$. Let N_{0} and R_{0} be the kernel and the range, respectively, of the map $I+K\left(s_{0}\right): X \rightarrow X$. Since $K\left(s_{0}\right)$ is compact, N_{0} is of finite dimension, R_{0} is of finite co-dimension, and therefore both are topological direct summands.

Let $X=N_{0} \oplus Y$ and let P_{0} be a continuous projection to R_{0}. Then the map $Y(s)=\left.P_{0} \circ[I+K(s)]\right|_{Y}: Y \rightarrow R_{0}$ gives, for $s=s_{0}$, an isomorphism $Y \cong R_{0}$. Since $Y(s)$ is continuous in $s, Y(s)$ is invertible for s sufficiently close to s_{0}. So, we can construct a map $h(s): N_{0} \oplus R_{0} \rightarrow X$ which is defined by $h(s)(y, z)=\left\{I-Y(s)^{-1} \circ P_{0} \circ(I+K(s))\right\} y+Y(s)^{-1} z$, where (y, z) $\in N_{0} \oplus R_{0}$. When $s=s_{0}$, this is an isomorphism $N_{0} \oplus R_{0} \cong X$, so $h(s)$ is an isomorphism for any s in some neighborhood of s_{0}, and we have, for s sufficiently near s_{0}, dim $\operatorname{ker}(I+K(s))=\operatorname{dim} \operatorname{ker}\{(I+K(s)) \circ h(s)\}$. On the other hand, we can show that $\operatorname{ker}\left\{(I+K(s) \circ h(s)\} \subset N_{0}\right.$. In fact, for $(y, z) \in N_{0} \oplus R_{0}$,

$$
\begin{aligned}
(I+ & K(s)) \circ h(s)(y, z) \\
\quad= & (I+K(s)) y-(I+K(s)) Y(s)^{-1} P_{0}(I+K(s)) y+(I+K(s)) Y(s)^{-1} \cdot z \\
= & (I+K(s)) y-\left(P_{0}+I-P_{0}\right)\left\{(I+K(s)) Y(s)^{-1} P_{0}(I+K(s)) y\right\} \\
& +\left(P_{0}+I-P_{0}\right)\left\{(I+K(s)) Y(s)^{-1} z\right\} .
\end{aligned}
$$

Here, by the definition of $Y(s)$, we have $P_{0}(I+K(s)) Y(s)^{-1} P_{0}=P_{0}$. So this becomes,

$$
\begin{aligned}
= & \left(I-P_{0}\right)\left\{(I+K(s)) y-(I+K(s)) Y(s)^{-1} P_{0}(I+K(s)) y\right. \\
& \left.+(I+K(s)) Y(s)^{-1}(z)\right\}+P_{0} z \\
= & \left(I-P_{0}\right) A+P_{0} z
\end{aligned}
$$

where, the last equality is the definition of the notation. Thus $(I+K(s)) \circ h(s)(y, z)=0$ is equivalent to $\left(I-P_{0}\right) A=0$ and $P_{0} z=0$, because these are direct sums. In particular we have $P_{0} z=z=0$ since $z \in R_{0}$. This implies $\operatorname{ker}(I+K(s)) \circ h(s) \subset N_{0}$. So we only have to study those s for which $(I+K(s)) \circ h(s): N_{0} \rightarrow X$ has a non trivial kernel. Now that we have reduced the problem to the study of the maps from a space of finite dimension to X, the following lemma completes the proof of our theorem.

Lemma. Consider an analytic family of linear maps $T(s): N_{0} \rightarrow X$ from a linear space N_{0} of finite dimension to a Banach space X. Those s for which the ranks of the maps $T(s)$ are less than $\operatorname{dim} N_{0}$ form an analytic set in the parameter space.

Proof. Let $P: X \rightarrow \boldsymbol{C}^{n}\left(n=\operatorname{dim} N_{0}<\infty\right)$ be any projection of X to a subspace of finite dimension. $P \circ T(s)$ is a finite matrix, so the determinant of $P \circ T(s)$ is well defined. Taking as P all such projections, we have obviously

$$
\{s ; \operatorname{rank} T(s)<n\}=\bigcap_{p}\{s ; \operatorname{det}(P \circ T(s))\}=0 .
$$

The right side is an analytic subset by the well-known theorem of Noether. This establishes the assertion. If we make use of the k-th minors of $P \circ T(s)$, we have:

Corollary 3. Those s, for which the dimensions of the kernel spaces of $I+K(s)$ are greater than k, form an analytic subset. Letting k run from 0 to ∞, we obtain a decreasing sequence of analytic subsets. When we apply this corollary to the resolvents of a family of elliptic operators, we obtain an intuitive proof of the fact that the dimension of eigenspaces is an upper semi-continuous function of the parameter.

Corollary 4 (A simplest case of generalized eigenvalue problem). Let K and M be compact operators, and let $L=I+M$. The point spectrum of $K f=s L f$ (i.e. the set of those s for which there exist nontrivial f satisfying $K f=s L f)$ is one of the following: 1) the whole C 2) $\boldsymbol{C}- \begin{cases}0 & 3) \\ \text { 3) a discrete set in } \boldsymbol{C} \text { with at most one accumulation point }\end{cases}$ at the origin.

Proof. $K f=s L f$ is deformed to $I+M-\frac{1}{s} K$, and the theorem may be applied. It is easily seen that all the three cases actually occur.

Reference

[1] I. F. Donin: Condition of triviality of deformations of holomorphic bundles on compact complex spaces. Math. Sbornic, 77 (119), No. 4, 602-623 (1968).

