82. Notes on Modules. III

By Ferenc A. SzÁsz
(Comm. by Kinjirô Kunugi, M. J. A., April 13, 1970)

In this paper we discuss the Kertész' radical for modules, and among other we show that this radical fails to be a ring radical in the sense of Amitsur and Kurosh. We refer yet concerning this topic to our earlier papers [6], [7].

Following Kertész [3], for an arbitrary ring A and for any right A-module M, we consider the set
(1)

$$
K(M)=\left\{X_{j} X \in M, \quad X A \subseteq \Phi(M)\right\}
$$

where $\Phi(M)$ denotes the Frattini A-submodule of M. (That is, $\Phi(M)$ is the intersection of all maximal submodules of M, and $\Phi(M)=M$ for modules M having no maximal A-submodules.) Obviously, $K(M)$ is an A-submodule of M. Calling an A-submodule N of M homoperfect, if (2)

$$
M A+N=M
$$

holds, then (1) implies by Kertész [3], that $K(M)$ coincides with the intersection of all homoperfect maximal A-submodules of M

Example. For a prime number p let A be the ring generated by the 3×3 matrices over the field of p elements:

$$
x=\left[\begin{array}{lll}
0 & 0 & 0 \tag{3}\\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad y=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then A is a noncommutative ring with p^{2} elements and with the multiplication:

	x	y
x	0	x
y	0	y

By a routine calculation it can be verified that the principal right ideal $(y)_{r}$ of A is a homoperfect maximal right ideal, but ($\left.y\right)_{r}$ is neither modular, nor quasimodular in A.

Furthermore, for the Kertész radical $K_{r}(A)$ of the A-right module A, one has by
(5)
$(x)_{r} \cap(y)_{r}=0$
obviously $K_{r}(A)=0$, being also $(x)_{r}$ homoperfect and maximal in A. The Jacobson radical $F(A)$ of A now coincides with $(x)_{l}=K_{l}(A)$, denoting $K_{l}(A)$ the left-right dual of $K_{r}(A)$

Therefore, this ring A has the property, that

$$
\begin{equation*}
0=K_{r}(A) \neq K_{l}(A)=F(A) \tag{6}
\end{equation*}
$$

Remark 1. For an antiisomorphic image A^{\prime} of the ring A of the above example evidently holds
(7)

$$
0=K_{l}\left(A^{\prime}\right) \neq K_{r}\left(A^{\prime}\right)=F\left(A^{\prime}\right)
$$

Theorem 1. For an arbitrary cardinality \mathfrak{M} there exists a ring A with \mathfrak{M} different elements and with conditions $0=K_{r}(A) \neq K_{l}(A)$ $=F(A)$ if and only if \mathfrak{M} is not a quadratfree finite number.

Proof. If \mathfrak{M} is a quadratfree finite number, and A has exactly \mathfrak{M} different elements, then A is a ringdirect sum of rings of prime order. These components are commutative rings, therefore also A is commutative, consequently $K_{r}(A)=F(A)$.

But in the case, when \mathfrak{M} is finite and not quadratfree, then $\mathfrak{M}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$ with $\alpha_{i} \geqq 2$ at least for an i, with different prime numbers p_{j}. Assume that $i=1$ and $p_{1}=p$. Let our ring B be the ringdirect sum of the ring A from the above example, of ($\alpha_{1}-2$) copies of fields of order p and of α_{j} copies of fields of order p_{j} for every $p_{j} \neq p$. Then one has obviously $|B|=\mathfrak{M}$ and $0=K_{r}(B) \neq K_{l}(B)=F(B)$.

Thirdly, if \mathfrak{M} is an infinite cardinality, then let C be the ringdirect sum of the ring A from the example and of a field with \mathfrak{M} elements. This field can be taken, as a field extension of the rational number field with the transcendence $\operatorname{grad} \mathfrak{M}$. Then evidently $|C|=\mathfrak{M}$ and

$$
\begin{equation*}
0=K_{r}(C) \neq K_{l}(C)=F(C), \tag{8}
\end{equation*}
$$

which completes the proof of Theorem 1.
Remark 2. The above ring C, constructed for an infinite \mathfrak{M} as a right C-module C, is completely reducible, without nonzero left annihilators, but with the nonzero right annihilator $(x)_{r}=F(C)$. A right completely reducible ring A has no nonzero right annihilators if and only if C is semisimple in the sense of Jacobson, and C satisfies the minimum condition for principal right ideals. (Cf. F. Szász [7].)

Remark 3. By the present author [8] was proved the existence of a right having a quasimodular maximal, but not modular right ideal. Calling an ideal Q of a ring A quasiprimitive, if there exists a quasimodular maximal right ideal R of A satisfying $Q=\{x ; x \in A$, $A x \subseteq R\}$, the equivalence of primitive and quasiprimitive ideals can be verified (cf. Steinfeld [5], and in a sharper form F. Szász [9]). But, for a maximal right ideal of a ring "homoperfect", "quasimodular" and "modular" are three different concepts.

Theorem 2. The twosided ideals K_{r} and K_{l} (Kertész radicals) satisfy $A K_{r} \subseteq \Phi_{r} \subseteq K_{r} \subseteq F$ and $K_{l} A \subseteq \Phi_{l} \subseteq K_{l} \subseteq F$ for any ring A, furthermore K_{r} and K_{l} are not radicals in the sense of Amitsur and Kurosh.

Proof. By the definition (1) it is sufficient to verify only the last statements (cf. yet F. Szász [8]).

Assume that K_{r} is a radical in the sense of Amitsur and Kurosh.

Then by Theorem 47 of Divinsky"s book [1], any twosided ideal of a semisimple ring is also semisimple. But the ring A of the earlier example of the present paper satisfies $K_{r}(A)=0$ with $K_{r}(F(A))=F(A)$ $\neq 0$ for the Jacobson radical of A.

This completes the proof of Theorem 2.
Theorem 3. For any ring A the following conditions are equivalent:
a) A is a semisimple Artin ring,
b) A is a ring with twosided unity satisfying the minimum condition on principal right ideals and yet with the condition that $K(M) \cdot A=0$ for the Kertész $K(M)$ radical of every right A-module M holds.

Proof. a) implies b). By assumption a) follows, that is also a ring with twosided unity and with minimum condition on principal right ideals. Furthermore, any A-right module M can be decomposed into a form
(9)

$$
M=M_{0} \oplus M_{1}
$$

where \oplus is a module direct sum, $M_{0} A=0$ and M_{1} is an unitary A module. This can be proved by Peirce decompositions. Moreover M_{1} is a completely reducible A-right module, which implies $K\left(M_{1}\right)=0$ and $K(M)=M_{0}$ whence

$$
K(M) \cdot A=0
$$

Conversely, also b) implies a). Let A be a ring having twosided unity, satisfying the minimum condition on principal right ideals and with $K(M) \cdot A=0$ for every right A-module M. Then $K_{r}(A)$ coincides with the Jacobson radical F of A, and $F A=0$ implies by $1 \in A$ evidently $F(A)=0$. Therefore, the right A-module A is completely reducible by the author's paper [7]. Consequently A is by $1 \in A$ a semisimple Artin ring.

This completes the proof of Theorem 3.

References

[1] N. Divinsky: Rings and Radicals. London (1965).
[2] N. Jacobson: Structure of Rings. Providence (1964).
[3] A. Kertész: Vizsgálatok az operátormodulusok elméletében. III. Magyar Tudományos Akadémia. III. Osztályának Közleményei, 9, 105-120 (1959). (In Hungarian; Investigations in the theory of operator modules.)
[4] J. Lambek: Lectures on Rings and Modules. Massachusetts, Toronto, London (1966).
[5] O. Steinfeld: Eine Charakterisierung der primitiven Ideale eines Ringes. Acta Math. Acad. Sci. Hung., 19, 219-220 (1968).
[6] F. Szász: Az operátor modulusok Kertész-féle radikáljáról (On the Kertész radical of operator modules). Magyar Tud. Akad. III. Oszt. Közl., 10 (1), 35-38 (1960).
[7] F. Szász: Über Ringe mit Minimalbedingung für Hauptrechtsideale. I. Publ. Math. Debrecen, 7, 54-64 (1960); II: Acta Math. Acad. Sci. Hungar., 12, 417-439 (1961); III: Acta Math. Acad. Sci. Hungar., 14, 447-461 (1963).
[8] -_: Lösung eines Problems bezüglich einer Charakterisierung des Jacobsonschen Radikals. Acta Math. Acad. Sci. Hung., 18, 261-272 (1967).
[9] -: The sharpening of a result concerning primitive ideals of an associative ring. Proc. Amer. Math. Soc., 18, 910-912 (1967).

