101. A Remark on the S-Equation for Branching Processes

By Stanley SAWYER*)
Brown University, Providence, R. I., U. S. A.
(Comm. by Kinjirô Kunugi, M. J. A., May 12, 1970)

Let $\{x_t, \mathcal{B}_t\}$ be a right-continuous strong Markov process on a metric space D. Assume $\{\phi_t\}$ is a finite increasing additive functional of $\{x_t\}$, and let $\{\pi_n(a, E)\}$ be a series of substochastic kernels for $a \in D$, $E \subseteq D^n$ satisfying $\sum \pi_n(a, D^n) = 1$. Consider the branching process $\{z_t\}$ in D (actually in $X = \bigcup_{0}^{\infty} D^n$) determined by $\{x_t\}$, the branching rate $d\phi_t$ (thus if $\phi_t = \int_0^t V(x_s) d_s$, an individual particle branches with probability $V(x_t)dt$ in time dt) and position distributions $\pi_n(x_t, E)$ of the offspring of a particle which does branch. (See [1]-[5]; we use the notation of [4].) The transition function P(t, x, E) of $\{z_t\}$ in X can be determined from the transition function P(t, a, A) of $\{x_t\}$ by either a linear equation in X or a non-linear equation in D. The linear equation is the so-called "M-equation".

$$\begin{array}{ll} \left(\begin{array}{ll} 1 \end{array}\right) & \bar{T}_t h(x) = E_x(h(z_t) \chi_{[\beta > t]}) \\ & + E_x \left(\chi_{[\beta \leq t]} \int_X \bar{T}_{t-\beta} h(y) \mu(w, dy) \right) \end{array}$$

for bounded Borel functions h(x) on X, where $\bar{T}_t h(x) = \int h(y) \bar{P}(t, x, dy)$ and β is the first branching time $(P_a(\beta > t/\mathcal{B}_{\omega}) = \exp{(-\phi_t)}$ in D). Alternately, for $a \in D$, we have the "S-equation" ([5])

(2)
$$\bar{T}_{t}\hat{f}(a) = E_{a}(f(x_{t})\chi_{[\beta>t]})$$

$$+ E_{a}\left(\chi_{[\beta\leq t]}\sum_{0}^{\infty}\int_{D^{T}}\prod_{1}^{T}\bar{T}_{t-\beta}\hat{f}(b_{i})\pi_{r}(x_{\beta},db)\right)$$

where f(a) is a Borel function on D, $|f(a)| \le 1$, and $\hat{f}(x) = \prod_{1}^{n} f(a_{i})$ for $x = (a_{1}, a_{2}, \dots, a_{\tau})$, $f(\partial) = 1$. In particular, if new particles are always born at the same location where their parent branches, the non-linearity in (2) is of power series type. As is proven in [2, III], the semi-group $\{\bar{T}_{t}\}$ can be obtained from either equation. I.e., if $h(x) \ge 0$ (or $f(a) \ge 0$), then $\bar{T}_{t}h(x)$ (or $\bar{T}_{t}\hat{f}(a)$) is the minimal non-

^{*)} The author was supported in part by NSF Grant GP-8975.

¹⁾ Here D^n is the usual *n*-fold Cartesian product of D with itself, and $D^0 = \{\partial\}$, $\partial \in D$, where $\pi_0(\alpha, \{\partial\}) = \pi_0(\alpha)$ refers to x_t dying childless.

²⁾ More exactly, in the case of (2), only those properties of the model which are permutation invariant; see the remark.

negative solution of (1) or (2) and can be obtained by iteration.

A probabilistic interpretation of iteration in (1) is easily found. If $\{\beta_n\}$ are the consecutive branching times of the process $\{z_t\}$, and $\bar{T}_t^{(n)}h(x)$ is the *n*-th iterate in equation (1) (with $\bar{T}_t^{(0)}h(x)=0$), then

$$\bar{T}_t^{(n)}h(x) = \bar{E}_x[h(z_t)\chi_{[\beta_n>t]}].$$

Or, if $g_t(w)$ is a random variable giving the total number of births (or deaths) before time t,

$$\bar{T}_t^{(n)}h(x) = \bar{E}_x[h(z_t)\chi_{\lceil a_t \leq n-1 \rceil}].$$

The purpose here is to give a similar interpretation of iteration in (2). We assign "generation numbers" to all extant (or dead) particles, which begin with n=0 for the initial particles and increase by one in all branches from parent to each offspring, the other particles being unaffected. Let $l_t(w)$ be the maximum generation number of all particles (including extinguished ones) at time t. Thus $l_t(w) \le 5$ iff all particles can trace their ancestry back to an original particle in five generations or less, and no particle has died childless in the fifth generation. Define

$$\phi_n(x,t) = \bar{E}_x(\hat{f}(z_t)\chi_{[l_t \le n-1]})$$

$$\phi_n(\hat{o},t) = 1$$

for all $x \in X$. Then, by arguing as in the proof of Lemma 6.1 in [4] Lemma. For all $n \ge 1$, $a \in D$, and $a = (a_1, a_2, \dots, a_r) \in D^r$,

$$(3) \qquad \phi_{n}(a,t) = E_{b}(f(x_{t})\chi_{\lfloor \beta > t \rfloor})$$

$$+ E_{a}\left(\chi_{\lfloor \beta \leq t \rfloor} \sum_{0}^{\infty} \int_{D^{r}} \phi_{n-1}(y,t-\beta)\pi_{r}(x_{\beta},dy)\right)$$

$$(4) \qquad \phi_{n}(x,t) = \prod_{i=1}^{r} \phi_{n}(a_{i},t).$$

By combining (3) and (4) we obtain the following

Theorem. For any Borel function f(a) on D, $|f(a)| \le 1$, let $\bar{T}_t^{(n)}\hat{f}(a)$ be the n-th iterate in the non-linear equation (2) beginning with $\bar{T}_t^{(0)}\hat{f}(a) = 0$. Then

$$\begin{split} \bar{T}_t^{(n)} & \hat{f}(a) \!=\! \bar{E}_a(\hat{f}(z_t) \chi_{\lfloor l_t \leq n-1 \rfloor}) \\ & =\! \bar{E}_a(\prod f(x_t^{(i)} \chi_{\mathcal{B}_n}) \end{split}$$

where the product is over the (random) number of particles alive at time t and \mathcal{B}_n is the event $l_t \leq n-1$.

Remark. The terms D^n of X in [4] (and here) are the usual Cartesian product and not the *symmetrized* Cartesian product of [2]; i.e., in [2], n-tuples which are permutations of one another are identified. The chief reason for the construction in [4] was for a simpler state space and construction of the process, although the unsymmetrized model does contain extra information. For example, the heir and heir apparent of a single initially existing particle would be instantly recognizable from $z_t(w)$, assuming that in any branch the first born particle always goes to the first component of the batch of com-

ponents which replaces the parent. For a more detailed analysis of the "descendence-structure" of $\{z_t\}$, at least when A=0, see [6].

References

- [1] N. Ikeda, M. Nagasawa, and S. Watanabe: Proc. Japan Acad., 41, 816-821 (1965), and 42, 252-257, 370-375, 380-384, 719-724, 1016-1021, and 1021-1026 (1966).
- [2] —: Branching Markov Processes. I-III. Jour. Math. Kyoto Univ., 8, 233-278, 365-410 (1968); III (to appear).
- [3] K. Ito and H. P. McKean, Jr.: Diffusion processes and their sample paths. Springer, Berlin, 1965, Chapter 5.
- [4] S. Sawyer: A formula for semi-groups, with an application to branching diffusion processes (to appear).
- [5] V. Skorokhod: Branching diffusion processes. Theor. Prob. Appl., 9, 492-497 (1964) (English translation).
- [6] V. P. Kharlamov: On properties of branching processes with an arbitrary set of particle types. Theor. Prob. Appl., 13, 84-98 (1968) (English translation).