95. Axiom Systems of Distributive Lattice

By Kiyoshi IsÉki and Sakiko ÔHashi

(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1970)

In his paper [3], S. Tamura gave some axiom systems for semirings. In this Note, we shall give some axiom systems of distributive lattices.

In a letter of Dr. H. F. J. Lowig to Ôhashi, he noted that Theorem 2 in [1], is true under an additional condition : $r+1=1$. As easily seen, in a semiring R with 0 and 1 that the addition and multiplication operations are commutative and these are idempotent, if $r+1=1$ for every $r \in R$, then R is a distributive lattice. In such a semiring R, for every $a \in R$, we have $a+a r=a(1+r)=a$. Therefore we have the absorption law in R. Hence from Theorems 1-4, in [2] we have the following theorems.

Theorem 1. $\langle R,+, \cdots, 0,1\rangle$ is a distributive lattice, if and only if it satisfies the following conditions:
1.1) $r+0=r$,
1.2) $r 1=r$,
1.3) $0 r=0$,
1.4) $r+1=1$,
1.5) $((a+b r)+c z+d+d) r=b r+(a r+z(c r)+d r)$ for every a, b, c, d, r, z in R.
Theorem 2. $\langle R,+, \cdots, 0,1\rangle$ is a distributive lattice, if and only if it satisfies the following conditions :
2.1) $r+0=0+r=r$,
2.2) $0 r=0$,
2.3) $r+1=1$,
2.4) $((a+b r)+c z+d+d) r+s=b r+(a r+z(c r)+d r)+s 1$.

Theorem 3. $\langle R,+, \cdots, 0,1\rangle$ is a distributive lattice, if and only if the following conditions hold:
3.1) $r+0=0+r=r$,
3.2) $r 1=r$,
3.3) $r+1=1$,
3.4) $0 e+((a+b r)+c z+d+d) r=b r+(a r+z(c r)+d r)$
for every a, b, c, d, e, r, z in R.
Theorem 4. $\langle R,+, \cdots, 0,1\rangle$ is a distributive lattice, if and only if it satisfies the following conditions:
4.1) $r+0=0+r=r$,
4.2) $01=0$,
4.3) $r+1=1$,
4.4) $0 e+((a+b r)+c z+d+d) r+s=b r+(a r+z(c r)+d r)+s 1$.

References

[1] S. ôhashi: On definitions of Boolean rings and distributive lattices. Proc. Japan Acad., 44, 1015-1017 (1968).
[2] -: On definitions for commutative idempotent semirings. Proc. Japan Acad., 46, 113-115 (1970).
[3] S. Tamura: Axioms for commutative rings. Proc. Japan Acad., 46, 116120 (1970).

