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In this paper we want to give a complementary result to the
previous paper [2]. The aimed theorem states that; if each of
involutive Banach algebras A and B has approximating identity and
has a faithful representation, then any representation of the
algebraic tensor product AB of A and B is subcross in the sense of
[1], in other words, it is satisfied that

IIr(x(R)y)tl <= Ilxll lYl or x e A and y e B.
This means that

[(t)[I _-< It for t e AODB,
where I1 denotes the ,-norm on A(gB, and that there are repre-
sentations v, v of A, B, called the restrictions of z on A, B,
respectively, on the representation space of 7 such that

v(x(R)y)--v(x)v(y)--v(y)v(x) for x e A and y e B.
These assertions seem to be important in investigations of algebraic
tensor products of involutive Banach algebras from standpoints of
C*-algebras.

As Professor A. Guichardet kindly pointed out by his private
letter, the arguments of Lemma 1 and Theorem 1 in [2] are lacking in
exactness. A part of the following is devoted to remove their
inexactness. It is done by imposing a natural condition upon invo-
lutive Banach algebras considered. The author wishes to take this
opportunity to deeply thank Professor Guichardet.

1. Preliminaries. An involutive algebra means an algebra over
the complex number field C with an involution always denoted by *.
Given an involutive algebra A, the adjunetion A of the identity to A
means A itself when A has an identity, the involutive algebra of all
formal sums u-x+2 of x e A and 2 e C when A has no identity. A
representation of an involutive algebra means its involution-preserving
homomorphism into the algebra of bounded linear operators on a
complex Hilbert space.

An involutive Banach algebra means an involutive algebra
equipped with a norm under which it is a Banach algebra and its
involution is isometric. When A is an involutive Banach algebra, as
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is well-known, A is an involutive Banach algebra under a norm to
which the initial norm on A is extended.

A norm on an involutive algebra A is called a C*-norm if it
makes A a normed algebra and it satisfies that

x*x x for x e A.
We start with the next
Lemma 1. Let A be an involutive algebra, I an ideal in A closed

under the involution, a C*-norm given on I. If for each x e A the
number set {llxyll’y e I and Ilyll_<_l} is bounded, then, A defined
by

IlxllA= sup IIxYll, x e A

becomes a semi-norm on A, coincides with on I and satisfies that
IlxyllA <= Ilxllllyll

and
IIx*xll-Ilxll

for x and y in A. Moreover, it is a C*-norm if and only if the left
annihilator L(I) of I contains no other element than O.

Proof. We show only that IIx*xll- Ilxll because the remainders
are obvious. Given a positive number 1 smaller than 1, there is an
element y in I with Ilyll =<1 such that

Therefore,
211x112<__ IIxyll- Ily*x*xyll <__ IIx*xyll <= IIx*xll .

Thus we know that
IIxll__< IIx*xll_<_ IIx*llllxll .

The desired ormula ollows at once from this inequality and the proof
is completed.

We are interested in the roof extension of introduced
in suchaway. If A is a C*-algebra with a norm II, B a dense
subalgebra of A, I an ideal in B, each of them is closed under the
involution and the closure J of I in A satisfies that L(J)-{0}, then,
denoting by I1 the restriction of on I, I1 is a C*-norm on
B and

IIx I- Ix[ for x e B.
In fact, II being the restriction of on J, II becomes a C*-norm
on A by Lemma 1, so it turns out to coincide with and or each
xB

yI with Ilyll<l yJ with IlYll_l

Let A and B be involutive algebras, I, J ideals in A, B,
respectively, closed under the involutions. Then by a short consider-
ation we know that L(I)= {0} and L(J) {0} implies Lx(R),(IC)J)- {0}
and vice versa. Thus it can be remarked that; if A and B are C*-
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algebras, I, J ideals in A, B, respectively, closed under the involutions,
each left annihilator contains no other element than 0 and the
restriction on I(J of the -norm II. on AB, then coincides
with I[.. This fact is known immediately from the minimality o
the a-norm (see [1] and [2]).

2. Compatibility of C**norms. Lemma I and Theorem I in [2]
becomes valid by being imposed a condition that involutive Banach
algebras under consideration have approximating identities and they
are restated as

Lemma 2. Let A and B be involutive Banach algebras with
approximating identities, then any C*-norm on A)B is subcross,
in other words, it satisfies that

I[x(R)yll <= [Ixl[ Ilyll for x e A and y B,
and it can be extended to a C*-norm on AB.

Here an approximating identity of a Banach algebra A means a
net {u} lying in the closed unit ball of A such that

limllux--xll-limllxu--xll =0 or each x e A.

The author does not know whether the existence of approximating
identities is inevitable for the conclusions above. It, however, gives
no unpleasant effects to other statements in [2].

Proof. First we prove that the roof extension onto AI)B of the
given is defined and becomes a C*-norm. Because A and B have
approximating identities, we know that L.(A)= {0} and that L.(B)= (0}.
So L.,(A)= {0} and L,(B)={0}. Therefore, L,(R).,(AB)= (0}. Thus,
on that account of Lemma 1, it is sufficient for our purpose to show
that
(*) sup Iluvll ior each u e A(B.

veA(R)B with Ilvlll

Given a positive element h in A and a state f of the ll-product
D=A(R) ,B o A and B, the C*-algebra obtained as the completion o
A)B with respect to II, the functional g,x on B defined by

g,(y) f(h(R)y) or y e B
turns out to be continuous from a theorem of Varopoulos which asserts
that any positive functional on an involutive Banach algebra with
approximating identity is continuous (see [4]). Moreover, since

sup g,(y) g h(R)y[I < c
for each y in B, where S denotes the set of all states of D, the number
set {l[gn,xll f S} is bounded from the uniform boundedness principle.
We denote by K the positive square root of its supremum.

Let x e A and y e B, then we know that

and by an analogous argument that
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where L. is a positive number depends only on y. These facts show
that the mapping (x, Y)IIx(R)Yll is separately continuous on A B.

Let next v e AB and Ilvll 1, then
(x(R)l)v]l limll(x(R)e)vll-<_limllx(R)ell =<K.,

{e.} being an approximating identity of B, and similarly,
I[(l@y)v] L,.

Therefore, if AB u= t+ x@l+ l@y+ 1@1, t e AB, x A, y e B
and e C, then

or each AB wth Ilvll 1 and we have (*).
That is a C*-norm on AB is used to show that is

subcross. Since the mappings xx@l and yl@y of A, B, re-
spectively, into the II-product of A and B are involution-
preserving isomorphisms, we know that

llxlllllxll
and that

IIlyll Ilyll
for any x e A and y e B. Thus at last we know that

for any x e A and y e B and the proof is completed.
Lemma 2 makes us conclude that any C*-norm on the algebraic

tensor product of C*-algebras is cross, because the minimal C*-norm
I]. is cross as was shown in [3].. Compatibility of representations.
Theorem. Let A and B be involutive Banach algebras, each of

them have approximating identity and have a faithful representation.

If is a representation of AB, then
(a) II(xy)ll g llxll IlYll for x e A and y e B,
(b) II(t)ll Iltl] ]or t e AB, and
(c) there are representations , of A, B, respectively, on the

representation space of such that
n(x@y)= nl(x)u(y)= (y)=(x) for x e A and y e B.

Proof. Let p and a be faithful representations of A and B
respectively, then n(p@a) becomes a faithful representation of AB.
Thus I]((p@a))( )] defines a C*-norm on AB. Therefore from
Lemma 2 for any x e A and y e B,

and (a) is proved. (b) follows from the definition of the F-norm and
(c) is a direct application of Remark 1 in [1] (see also Lemma 2 in [2]).
Then the proof is completed.

From the above theorem it is concluded when A and B are



408 T. OKAYASU [Vol. 46,

C*-algebras that
Iltll= sup Ilzr(t)[I for t e AB

representation of A(R)B

and that any representation z of AB is continuous with respect to
the -norm. In connection with this fact it is remarked that any re-
presentation of an involutive algebra is continuous with respect to
its maximal C*-norm if it exists.

[1]

[2]

[3]

[4]

References

A. Guichardet: Tensor products of C*-algebras, Part I. Aarhus Univ.
Lecture Notes Ser., No. 12 (1969).

T. Okayasu: On the tensor products of C*-algebras. TShoku Math. J., 18,
325-331 (1966).

T. Turumaru: On the direct-product of operator algebras. I. TShoku Math.
J., 4, 242-251 (1952).

N. T. Varopoulos: Sur les formes positives d’une alg6bre de Banach. C.
R. Acad. Sci. Paris, 258, 2465-2467 (1964).


