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117. On the Spaces with the .Star Finite Open Basis

By Yoshikazu YASUI
Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjir6 KUNUGI, M. Z. A., June 12, 1970)

One of the well known theorems for the metrizability is as follows:
A regular T-space X is metrizable if and only if there exists a a-locally
finite open basis of X.

Our purpose of this paper is to study the spaces with the a-star
finite open basis.

Let us recall the definitions of terms which are used in the state-
ment of this paper. Let X be a topological space and ?I be a collection
of subsets of X. is said to be point finite (resp. point countable) if
every point of X is contained in at most finitely (resp. countably) many
elements of . is locally finite (resp. locally countable) if every
point of X has a neighborhood which intersects only finitely (resp.
countably) many elements of ?I. ,is star finite (resp. star countable)
if every element of intersects only finitely (resp. countably) many
elements of /. A space X is said to be strongly paracompact if every
open covering of X has a star finite open covering of X as a refinement.
A a-star finite open basis is an open basis which is the union of count-
ably many star finite open coverings.

Finally, to state our results we need the next notation. Let
{Ul x e X} be a collection of subsets of X with the index set X, then
its collection is symmetric if "y e U" is equivalent to "x e Uv".

We assume that all the spaces in this paper are T-spaces and for
a symmetric collection {U Ix e X}, U contains x for every point x e X.

As is well known, not every metric space has a a-star finite
basis (see Yu. M. Smirnov [5]). The existence of a a-star finite open
basis is not sufficient for a metric space to be strongly paracompact
(see J. Nagata [4, p. 201]), but clearly, a strong paracompactness or a
local compactness is sufficient for a metric space to be with the a-star
finite open basis, and furthermore it is known that a metric space X
has a a-star finite open basis if and only if X is homeomorphic to a
subspace of atopological product N(9)1)Iw for suitable 9 (see J.
Nagata [4, p. 201] or [3]).

1) N(9) is the generalized Baire’s zero dimensional space with respect to
that is N(2) is the set of all sequences (al, c2,...) of elements a, e 9. The distance
between two distinct points a=(c1, a,...) and/=(1,/.’’ ") of N(9) are defined by

1
P (a’/)= min{kla#}
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At first we begin by proving the ollowing lemma.
Lemma. Let {UIa e A} be a locally finite open covering of a

normal space X, then there exists a closed covering {F c e A} of X
such that

(i) FcU for every a eA,
and

(ii) if 0 U- U is not empty, then 0 F- F is not empty
aA aA aA aA

for every A A.
Proof. Let [A]=[A’IA’cA, U- U# and x(A’) be an

aA aA

arbitrarily fixed point of U- U or each A’e [A]. Then,
aA aA

{[x(A’)}lA’e [A]} is a locally finite closed collection (see M. Katetov
[1, Theorem 1-1]).

On the other hand, there exists a closed covering {F:la e A} of X
such that F:c U for every a e A (see M. Katetov [1, Theorem 1-2]).
If we let

F-F: {x(A’) a e A’ e [A]} for each a e A,
then it is clear that {F ]a e A} is a closed covering satisfying the prop-
erties (i) and (ii) of the emma.

Theorem 1. In a regular space X, the following properties are
equivalent"
( 1 There exists a a-star finite open basis.
2 There exists a basis which is the union of countably many sym-

metric star finite open coverings of X.
(3) There exists a basis which is the union of countably many sym-

metric locally finite open coverings of X.
(4) There exists a basis which is the union of countably many sym-

metric point finite open coverings of X.

Proof. (1) implies (2). Let H-H be a a-star finite open

basis of X where H={Ua e An} is a star finite open covering of X
for n=l, 2, From the above lemmu, for each n, we get the closed
covering {F a e A} such that

(i) FcU for every a e A,
and

(ii) if U- U is nonempty, then F- F is nonempty
aA A aA aA

for every Ac A..
If, for eeh n, we put= A {U, X--F.}, then . will be a star

aGAn

2) This property is stronger than the property such that N U:0 is equiva-

lent to N F=0 for every A’cA, and in the latter case, this lemma is well known.
aA

3) A {U,X--F} is the eolleetion (( N U)N( (X--F))IA’cA,},
aCAn aA
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finite open covering of X. Really it is trivial from the star finiteness
of 1 that is an open covering of X. Let H be an arbitrary element
of , that is,

H U) (X- ) F.) for some A A,
aA

a0 be an arbitrarily fixed element of A and A’-= {a e A U. U. 4:},
then A’ is finite. If H H’4=O for H’=( O U) (X- ) F) e , then

aB aB

(O U)(?( U)#I and therefore Bc A’. Consequently H intersects
aA aB

only finitely many elements of n.
Furthermore we shall prove that {st(x, (R))) x e X} is star finite for

every star finite collection (R)={GI2 e A} of subsets of X. For this

purpose, it is sufficient to show that (R)’= { [.) GI ( G4=, G e (R) for
i=l i=l

i= 1, 2, ..., n n= 1, 2.. is star finite. Let A {2’ e A[ G G, :/: )} for

each 2 e A, then A is finite. If G’- G and G"-) G, are elements
=1 t=l

of (R)’ where ( G,4: ) and ( G,4= ), and G’ G" is nonempty, then
i=l i=l

{fl,/,’’ ",/} U {A,I/ e U {A 12 e J A}} (this set is finite),
i=l

therefore (R)’ is a star finite collection of subsets of X, and hence
N {st(x, )lx e X} is a star finite open covering of X.

Lastly we will show that !3= N is a basis of X and !3 is a
n=l

symmetric star finite open covering of X. From the above discussion,
N being a symmetric star finite open covering of X is trivial for each
n=l, 2,

In order to prove that 3 is a basis of X, let x be any element

of G for any open set GX. From the fact that 1I-- 1 is a basis
-----1

of X, there exists a positive integer no and, a0eA such that
x U.oC G. If A ={a e A Ix e U}, then 0 is an element of finite set
A and x e U.- U.. Then, from the property (ii) of .o, ( F.

aA aA aA

--)F is not empty, and let y be any element of it. If we let
aA

H (( U) (X- F), then x, y e H e o, i.e., x e st(y, no) no.
aA aA

Our next step is the fact that st(y, o) is contained in Uo. Let
H:(( U.)(X--J Fo) be any element of o which contains the

aB aB

point y. From y e ( F and a0 e A, we get y e F and hence a0 e B,
aA

4) For the collection ( of subsets of X and the subset A of X, st(A, q) is
the union of all elements of which intersect A.
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because y is not contained in L_) F. ThereforeH U Uo, that is,
aB aB

x e st(y, 0)UoG,

and hence - n is a basis of X such that n is a symmetric star

finite open covering of X for n-l, 2, it completes the proof.
(2) implies (3), (3) implies (4): It is trivial.
(4) implies (2). The symmetric point finiteness is the symmetric

star finiteness (see Y. Yasui [7]).
(2) implies (1). It is trivial.
It completes the proof of Theorem 1.
In J. Nagata [3, Remark], a regular space X has a star finite basis

if and only if X has a a-star countable basis. Then, we will get the
following theorem:

Theorem 2. In a regular space X, the following properties are
equivalent"
1 There exists a a-star finite basis.

( 2 There exists a basis which is the union of countably many sym-
metric star countable open coverings of X.

(3) There exists a basis which is the union of countably many sym-
metric locally countable open coverings of X.

(4) There exists a basis which is the union of countably many sym-
metric point countable open coverings of X.

(5) There exists a a-star countable basis, that is, a basis which is
the union of countably many star countable open coverings of X.

Proof. (5) implies (1). We assume that there exists an open

basis 1- 1 such that IIn-{Ula e An} is a star countable open

covering of X, then from the star countability of 1, we can get the
decomposition L) F of A such that a,/9 being the same class F is

equivalent to U J st(U, ln) (or U st(U, 1,)). If we let
=1 =1

GI= LJ {U la e F}, then it is easily seen that {GI 12 e A} is a mutually
disjoint open covering of X for n-l,2,.... From the star counta-
bility of lln, we may put F-[a i- 1, 2, }.

For every positive integer n and i, we let n,-{UI2
Then, since U.G for each 2 e A, and {GI2 e A} is a discrete
covering of X, it is trivial for , to be a discrete open collection of

subsets of X. On the other hand, L_J 3n’--lIn is easily seen, and
i=l

therefore L_] !3’- L_)1I--1I is a basis of X. Furthermore, if let
n,i=l n=l

5) for i> 1, st (U.,, lI.)=St (st-(U.n, 11.), lI.).
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@n,*-n,*LJ{Gl 4n} then ,* is an open covering of X, because
(GI e A} is a covering of X, and hence ,* is a star finite open
covering (really each element of 0,* intersects at most one other
element of ,*).

From the above, -- U’ U !’-U 1I-11 is a basis and
n,i=l n,i-"l n=l

of course is a basis such that ,* is a star finite open covering of X,
that is, is a a-star finite open basis of X.

(1) implies (5). It is trivial.
(1), (2), (3) and (4) are equivalent. It is trivial from the facts that

(1) implies (2) of Theorem 1, (2) of Theorem 1 implies (2), (2) implies
(3), (3) implies (4), (4) implies (2) (see Y. Yasui [7]), (2) implies (5) and
(5) implies (1).

It completes the proof of Theorem 2.
Remark 1o The a-star finite open basis is the basis 1I which is

the union of countably many star finite open coverings 11 of X. In this
definition, we can not give the star finite and locally finite collection
of open sets of X instead of each 11 being the star finite open covering
of X, that is, there exists a space X with the basis which is the union
of countably many star finite and locally finite open collection of X,
but X has not the a-star finite open basis. Really, let X be the
Euclidean plane set and p be a usual metric on X.

We shall define the following other metric d on X (see Yu. M.
Smirnov [5], or Y. Yasui [6]):

d(x y)- p(x’ O)+p(y, 0) if argument xargument y (mod )
tp(x, y) if argument x--argument y (mod u),

Where 0 is the original point of X.
Then it is easily seen that this metric space (X, d) has an open

basis 11- 11 such that each 1 is a star finite and locally finite collec-
n----1

tion of open sets of X. But X will not be with a a-star finite open
basis.

If X has a a-star finite open basis 1I- L)Ltn where each 1I is a
n=l

star finite open covering of X, then each 1t is a countable collection
because of connectedness of X and hence 1I is a countable open basis.
But it is clear that X is not separable.

Remark 2. Separable metric spaces (or in general, locally
separable metric spaces) are the spaces with the a-star finite open
basis, and the converse is not true. Really, an uncountable space
with the discrete topology has this property.

Remark 3o Not every strongly paracompact spaces are the spaces
with the a-star finite open basis (see J. Nagata [4, p. 201]) and, not the
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spaces with the a-star finite open basis are the strongly paracompact
spaces (see Example of Remark 1).
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