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213. A Remark on the Concept of Channels. II

By Marie CHODA and Masahiro NAKAMURA
Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjir6 KIINU(I, M. ft. A., Nov. 12, 1970)

In the previous note [5], the concept of generalized channels is
introduced. In the present note, the effect of the action of a motion
on the input will be discussed. Incidentally, the deformation of the
spectra of operators through a generalized channel will be considered.

1o Following after the notation of Dixmier [4], the subconjugate
space A, of a von Neumann algebra A is the Banach space of all
ultraweakly continuous linear functionals defined on A. A generalized
channel K is a positive linear transformation defined on a von Neumann
algebra B, say output, with the range in avon Neumann algebra A,
say input, which preserves the identity; in other words, the sub-
conjugate K, of K is positive and norm preserving"
( 1 ) IIK,Pll [Ipil,
or p >=0, el. [5]. Conveniently, K, will be called a generalized channel
too. A generalized channel K, transfers a normal state p from A,
to B,, and K,p is a normal state of B. If A--B, then a generalized
channel K will be called a transition; if A is abelian then a transition
is a transition operator in probability.

2. The concept of generalized channels iS born on the informa-
tion theory, but it is not restricted. Suppose that the input A repre-
sents a physical system and the output an observation instrument.
A state of the physical system will drive some state of the instrument,
if they are connected together. Thus a generalized channel can
be considered as a mathematical model for physical measurements.
Especially, the situation is suitable for statistical mechanics, including
both classical and quantum.

A motion t of a system A is a (,-preserving) automorphism of a
von Neumann algebra A, according to a modification of the definition
of Segal [8]. A motion/ is ultraweakly continuous; hence the sub-
conjugate (may be abbreviated by/ too)of the motion transforms a
normal state p to a normal state p" by
2 ) p"(a) p(a"),

for every a e A.
What happens for the receiver if a motion acts on input? The

observer obtained K,p before the motion through the channel K.
After the motion, he receives K,p,. Put
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( 3 ) (K,p) M,(K,p)-- K,p".
Then (or M,) is itself a generalized channel with the equal input and
output B; or any p>=0, satisfies

by (1). This shows;
I. A motion on the input induces a transition on the output.
In the case of macroscopic measurements, von Neumann [7 V. 4]

analysed that the output of macroscopic measurement is abelian and
finite dimensional hence one can define that the output B is macroscopic
if B is abelian and finite dimensional. In this case, transition can be
described by a Markov matrix on the character space (--pure state
space) o the algebra B. Hence I implies

II. A motion on the input induces a Markov chain on the charac-
ter space of the output if the output is macroscopic.

Before to proceed further, it may be remarked that II remains
true if the input is replaced by a C*-algebra" In this case, a motion
of a C*-algebra is an automorphism, and a generalized channel for
C*-algebras is a positive linear transformation K preserving the iden-
tity which maps the output B into the input A; hence the state space
F, of A is mapped by K into the state space F,z of B, cf. [8].

II proposes a satisfactory oundation or statistical mechanics"
For a macroscopic (=statistical) observer observes a Markov chain on
the character space oi the instrument driven by a motion o the physi-
cal system. If the inverse /2- o/2 induces the same Markov matrix
(that is, the reversibility of the motion is assumed), then the Markov
matrix is symmetric; hence the entropy or the observer increases
time to time. If a suitable ergodicity is assumed for , then drives
any state of B rapidly to the equilibrium state which has the maximum
entropy; this is Gibbs’ H-Theorem in statistical mechanics. The
details are omitted.

If the generalized channel K perturbes the input, then the situa-
tion is not so simple, which will be discussed in another occasion as a
continuation of [3] and [6].

3 Recently in [1], Berberian gives a determinant-free proof oi
a conjecture of von Neumann (which is proved originally by Fuglede
and Kadison with their determinant theory)" In a finite factor with
the trace v, the convex hull co a(a) of the spectrum a(a) of an element
a contains v(a). It seems that Berberian’s proo is an eminent im-
provement in the theory o finite factors. In his proof, he points out
that the closed numerical range W(a9 of a is contained in the convex
hull o the spectrum of a, where is Dixmier’s center-valued trace;
consequently, a(a)co a(a). Since Dixmier’s trace is the conditional
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expectation conditioned by the center in the sense of Umegaki [11],
one naturally ask" In avon Neumann algebra A and the conditional
expectation e conditioned by a von Neumann subalgebra B, is it true
that
( 4 ) a(a) co a(a)
or every a e A ? In general, the conjecture is alse H. Choda presents
an example in a seminar talk"

III (H. Choda). Even if B is abelian, (4) is not true in general.
It is sufficient to disprove (4) that a finite factor A contains an

element a and an abelian subalgebra B which satisfy a-0 and a is a
non-zero hermitean element o B" This is the case if A is all 22
matrices, B is the diagonal,

--1 --I) and a"-( _).
However, if satisfies a certain additional condition, then (4)will

be proved by the technique created by Berberian [1]. For example,
one has

IV. I i eonveoid (i.e., W(a)-eo (a)), the (4) i tre or .
Since the conditional expectation is a generalized channel, IV is a

consequence o the following

V. If K is a generalized channel, and if b is a convexoid belong-
ing to the output B, then
( 5 a(Kb) co a(b).

To prove V, one needs Berberian-Orland’s theorem [2] (which is
implicitly contained in a theorem o Takeda [10; Theorem 1], cf. also
[9])" if X is the state space of a C*-algebra A, then
(6) W(a)-Z(a)-{p(a) p e },
or every a e A. If p e F, then K*p e F,, since K is positive and
preserves the identity; hence

p(Kb)-- K*p(b) e F, (b) ITV(b),
which implies

VI. If K is a generalized channel and b an element of the output
of K, then
( 7 W(Kb)c W(b),
that is, K contracts the closed numerical range.

On the other hand, a(a) is contained in W(a) and W(b)-co a(b)
by the hypothesis, so that

a(Kb) c W(Kb)c W(b) co a(b),
which proves V.

V and VI show that generalized channels have an averaging
property. It is also remarked that the proofs of V and VI are es-
sentially C*-algebraie.
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I the output o K is abelian, then every element o the output is
normal and consequently convexoid hence V implies

VII. If the output B of a generalized channel K is abelian, then
(5) is true for any b e B.
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