212. Notes on Regular Semigroups. II

By Sándor Lajos

K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1970)

First we give a new characterization of regular semigroups.¹⁾

Theorem 1. A semigroup S is regular if and only if the relation $L \cap R = RSL$

holds for every left ideal L and every right ideal R of S.

Proof. Let S be a regular semigroup. Then the well known characterization due to L. Kovács and K. Iséki implies that

(2) L = SL

for any left ideal L of S, and similarly we have

$$(3)$$
 $R = RS$

for any right ideal R of S. (2) and (3) imply

$$(4) L \cap R = SL \cap RS = (RS)(SL) = RSL,$$

i.e., the condition (1) is necessary.

Conversely, let S be a semigroup with property (1) for any left ideal L and any right ideal R of S. To show that S is regular, let a be an arbitrary element of S. Then (1) implies

$$(5) a \in L(a) \cap R(a) = R(a)SL(a) \subseteq aSa,$$

that is, S is a regular semigroup.

Next we give a similar characterization of semigroups which are semilattices of groups.²⁾

Theorem 2. A semigroup S is a semilattice of groups if and only if the relation

$$(6) L \cap R = LSR$$

holds for every left ideal L and every right ideal R of S.

Proof. Let S be a semigroup which is a semilattice of groups. It is known that every one-sided ideal of S is two-sided and S is regular (see [1] or [4]). This implies that

$$SI = I = IS$$

holds for any ideal I of S. Hence we get

$$(8) I_1 \cap I_2 = I_1 S \cap SI_2 = I_1 SI_2$$

for any couple of (two-sided) ideals of S, i.e. the condition (6) holds.

Conversely, let S be a semigroup with property (6) for any left ideal L and any right ideal R of S. Then (6) implies that $L=LS^2$ and

¹⁾ For the notation and terminology we refer to [1].

²⁾ For other characterizations of semigroups which are semilattices of groups, see [3]-[5].

 $R=S^2R$ for any left ideal L and any right ideal R of S, respectively. Hence every one-sided ideal of S is two-sided, that is, S is a duo semigroup. On the other hand (6) implies

$$(9) ISI=I$$

for any two-sided ideal I of S. But every two-sided ideal is a quasiideal of S, and conversely. Hence a result of Luh [7] guarantees that S is regular. By Theorem 3 of the first part of this note, S is a semilattice of groups.

Analogously can be proved the following result, utilizing that every bi-ideal is a two-sided ideal in a semigroup which is a semilattice of groups (see the author [6]).

Theorem 3. For a semigroup S the following statements are equivalent and any one of them is a necessary and sufficient condition concerning S to be a semilattice of groups:

a seminance of grou	$p_{\mathcal{S}}$.	
B^3	18	BSQ
B^2Q	19	QSB
BQB	20	QSQ
QB^2	21	LSB
BQ^2	22	LSQ
QBQ	23	BSR
Q^2B	24	QSR
Q^3	25	LSR
$LB^{\scriptscriptstyle 2}$	26	BIB
LBQ	27	BIQ
LQB	28	QIB
LQ^2	29	QIQ
$B^{2}R$	30	LIB
BQR	31	LIQ
QBR	32	BIR
Q^2R	33	QIR
BSB	34	LIR
	B^3 B^2Q BQB QB^2 BQ^2 QBQ Q^2B Q^3 LB^2 LBQ LQB LQB LQ^2 B^2R QBR Q^2R	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Remark. B, I, L, Q, and R denote bi-, two-sided, left, quasi-, and right ideal of S, respectively. For example, the statement 10 means that S is a semigroup with property $L \cap B \cap Q = LBQ$ for any bi-ideal B, any left ideal L, and any quasi-ideal Q of S. The Condition 1 means that

$$(10) \qquad \qquad \bigcap_{i=1}^{3} B_i = \prod_{i=1}^{3} B_i$$

holds for any triple B_1, B_2, B_3 of bi-ideals of S.

References

- [1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. I, 2nd edition. Amer. Math. Soc., Providence, R. I. (1964).
- [2] S. Lajos: Notes on regular semigroups. Proc. Japan Acad., 46, 253-254 (1970).
- [3] —: Characterizations of semigroups which are semilattices of groups (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 19, 113-115 (1969).
- [4] —: Note on semigroups, which are semilattices of groups. Proc. Japan Acad., 44, 805-806 (1968).
- [5] —: On a class of inverse semigroups. Algebra Seminar Report, University of California, Davis, No. 3, 39-43 (1969).
- [6] —: On (m, n)-ideals in regular duo semigroups. Acta Sci. Math. (Szeged), **31**, 179-180 (1970).
- [7] J. Luh: A characterization of regular rings. Proc. Japan Acad., 39, 741-742 (1963).